ACN. 000317251

9th August 2006

The Manager
Company Announcements Office
Australian Stock Exchange Ltd
$4^{\text {th }}$ Floor, 20 Bridge Street
SYDNEY. NSW 2000

## Rocklands Group Copper Project (CDU 100\%) <br> Latest Drilling confirms a 850 m long mineralized zone at Las Minerale Prospect

- Drill hole DORC 111 drilled 30 metres behind DORC 105 was targeted to test the depth extension to mineralization along the eastern grid line 1100 E . Four distinct zones of copper mineralization were intersected. The combined zone of mineralization totaled more than 96m including38m @ 1.82\% Cu from 47m-85m and 42m @ 1.10\% Cu from 196m-238m. DORC 111 ended in copper mineralization. DORC 112 drilled 30m behind DORC 111 has been drilled to 165 metres as a pre collar for subsequent diamond core drilling. The mineralized zone is expected to be intersected at a depth of 300m.
- Seven new drill holes DORC 122, 123, 124, 126, 127, 129 and 130 drilled along a 200m, $310^{\circ}$ NW strike extension from DORC 105 have all intersected significant widths of visual sulphide mineralization associated with quartz carbonate, pyrite, chalcopyrite, lode with proximal feldspar and magnetite alteration. (See Drill Hole Location Map attached)
- DORC 118 drilled 30 metres behind DORC 85 intersected visual sulphide mineralization in the form of massive and disseminated sulphide stringers of pyrite and chalcopyrite in a calcitic lode through a 138m down hole depth from $120 \mathrm{~m}-258 \mathrm{~m}$. The hole ended in sulphide mineralization and will be targeted for our second diamond core hole. DORC 85 intersected 89m @ 1.1\% Cu from 65m-174m including 18m @ 2.82\% Cu from 85m-103m.

The Company's three independent Geological Consultants have been concentrating on delineating mineralization along the north-western strike extension from drill hole DORC 105. Drilling has extended the zone of mineralization a further 200 metres at approximately $310^{\circ}$ strike from DORC 105. Costeaning has been carried out over various intervals and up to 200 m widths along 500 m of possible strike length from DORC 105.

A shallow 87m scout hole DORC 110, has intersected a number of zones of mineralization including 21m @ .51\% Cu and 962 ppm Co mineralization from 45m-66m 125 m along SE strike from DORC 63. DORC 110 will be followed up with deeper holes drilled under DORC 110 to test the deeper zone. DORC63 which stopped in mineralization, with 4m @ $2.03 \% \mathrm{Cu}$, will also be extended

The total length of mineralization along the zone known as Las Minerale has now been extended to approximately 850 m .

Drill Holes DORC 01, 02 \& 03 drilled upto 300m along a further possible SE strike from DORC 110 intersected oxide copper mineralization in three shallow holes. The three RC holes were drilled as a result of the 420 hole Bedrock Geochem RAB Survey. DORC 01 intersected $4 \mathrm{~m} @ 1 \% \mathrm{Cu}$ from 4m-8m followed by 14 m @ $1.46 \% \mathrm{Cu}$ from 14m-28m. DORC 02 intersected 22m @.8\% Cu from 3m-25m. DORC 03 intersected 18m @ .82\% Cu from 1m-19m. DORC 01, 02 \& 03 are the possible extension of Las Minerale and may extend the Las Minerale strike length to 1.15 km . The Company intends to test drill below the oxide mineralization of DORC 01,02 and 03 with deeper holes.

Table 1: Drill Hole Locations DORC 110 \& 111

| Las Minerale Prospect RC Dill Holes DORC-110-111 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hole ID | Easting (mE) | Northing ( mN ) | Azimuth ( ${ }^{\circ} \mathrm{mag}$ ) | Dip ( ${ }^{\circ}$ | Depth <br> (m) | $\begin{aligned} & R L \\ & (m) \end{aligned}$ | From <br> (m) | $\begin{gathered} \text { To } \\ (\mathrm{m}) \end{gathered}$ | Down <br> Hole Width (m) | \% Cu |
| DORC-111 | 433405 | 7714085 | 216.1 | -55 | 165 | 235 | 47 | 85 | 38 | 1.82 |
|  |  |  |  |  |  |  | 196 | 238 | 42 | 1.10 |
| DORC-110 (Scout) | 433721 | 7713584 | 216.1 | -55 | 88 | 235 | 45 | 66 | 21 | . 55 |
| - Drill hole collars located by GPS and not yet surveyed <br> - Drilling undertaken by RC method using face sampling hammer (53/4) <br> - Drill holes surveyed by down-hole camera <br> - Drill samples collected at 1 m interval via three tier splitter producing $87.5 \% / 12.5 \%$ split with $12.5 \%$ sub-sample forwarded for assay <br> - 3 acid digest, AAS finish assay method used |  |  |  |  | applied to quoted intersecalues applied |  |  |  |  |  |

## New Resource Consultants:

The Company has employed the services of Coffey Mining a subsidiary of Coffey International Ltd as Geological Consultants.

The scope of works to be carried out by Coffey's is to prepare to resource statement on the Rockland Group Copper Project. The statement will entail providing CuDeco with a JORC code mineral resource in the category of measured and indicated and inferred. The Mineral Resource is to be compiled on the completion of the drilling of Las Minerale and the completion of 5 deep diamond holes +300 m under the Double Oxide Prospect. The company is providing Coffey's with continuous results of drilling on a regular basis. It is anticipated a new resource for Las Minerale, Rocklands Central and Double Oxide will be completed during September 2006.

## Geophysics Survey:

The Company has employed the services of Gap Geophysics Australia Pty Limited to carry out a Sub-Audio Magnetics (SAM) survey on the Las Minerale Prospect

## Scope of Work:

Sub-Audio Magnetics (SAM) survey over the one area at Rocklands Group Copper Project, Queensland Australia.

Two grids/loops totalling approximately 150 line km will cover an area of 5 km x 2.5 km at 50 m line spacings

Line spacing: 50m, TMI (total magnetic intensity) sample interval: 0.5 m , TFMMR (total field magnetometric resistivity) sample interval: 2.0 m

The survey is expected to commence around $24^{\text {th }}$ August 2006, notwithstanding current operational commitments.

## Yours faithfully

Wayne McCrae
Chairman

The information in this report that relates to exploration results, mineral resources or ore reserves is based on information compiled by Mr Alex Teluk, who is a Member of the Australian Institute of Geoscientists (AIG), Mr Teluk is employed by Geodyne Pty Ltd Mr Teluk has sufficient experience, which is relevant to the style of mineralization and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Teluk consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.


Figure 1 - RC Drill Hole Locations

THE NEW FORCE IN COPPER
Assay Results

| Hole No | Intersection | \% Cu | ppm Co |
| :---: | :---: | :---: | :---: |
| DORC 111 | 46-47 | 0.17 | 400 |
|  | 47-48 | 0.64 | 450 |
|  | 48-49 | 0.13 | 850 |
|  | 49-50 | 0.12 | 1180 |
|  | 50-51 | 0.87 | 1090 |
|  | 51-52 | 0.76 | 710 |
|  | 52-53 | 0.95 | 510 |
|  | 53-54 | 0.97 | 730 |
|  | 54-55 | 1.37 | 1450 |
|  | 55-56 | 0.76 | 1500 |
|  | 56-57 | 0.21 | 80 |
|  | 57-58 | 1.68 | 1570 |
|  | 58-59 | 0.67 | 1810 |
|  | 59-60 | 0.53 | 1980 |
|  | 60-61 | 0.68 | 1950 |
|  | 61-62 | 1.02 | 1840 |
|  | 62-63 | 0.65 | 1520 |
|  | 63-64 | 0.54 | 1500 |
|  | 64-65 | 1.08 | 1340 |
|  | 65-66 | 1.82 | 1110 |
|  | 66-67 | 3.86 | 1190 |
|  | 67-68 | 3.56 | 1200 |
|  | 68-69 | 4.39 | 1380 |
|  | 69-70 | 3.74 | 1280 |
|  | 70-71 | 3.74 | 1400 |
|  | 71-72 | 3.64 | 1650 |
|  | 72-73 | 2.80 | 1320 |
|  | 73-74 | 4.55 | 1450 |
|  | 74-75 | 3.62 | 1480 |
|  | 75-76 | 4.85 | 1420 |
|  | 76-77 | 4.98 | 1000 |
|  | 77-78 | 3.74 | 1100 |
|  | 78-79 | 3.12 | 1040 |
|  | 79-80 | 1.40 | 690 |
|  | 80-81 | 0.56 | 830 |
|  | 81-82 | 0.41 | 740 |
|  | 82-83 | 0.31 | 490 |
|  | 83-84 | 0.29 | 420 |
|  | 84-85 | 0.25 | 350 |
|  | 85-86 | 0.16 | 320 |
|  | 86-87 | 0.13 | 200 |
|  | 87-88 | 0.15 | 250 |
|  | 88-89 | 0.08 | 180 |
|  | 89-90 | 0.17 | 200 |
|  | 90-91 | 0.08 | 180 |
|  | 91-92 | 0.08 | 170 |
|  | 92-93 | 0.19 | 170 |


| Hole No | Intersection | \% Cu | ppm Co |
| :---: | :---: | :---: | :---: |
| DORC 111 | 93-94 | 0.20 | 300 |
|  | 94-95 | 0.19 | 230 |
|  | 95-96 | 0.30 | 300 |
|  | 96-97 | 0.17 | 130 |
|  | 97-98 | 0.10 | 140 |
|  | 98-99 | 0.09 | 130 |
|  | 99-100 | 0.10 | 210 |
|  | 100-101 | 0.49 | 370 |
|  | 101-102 | 0.06 | 360 |
|  | 102-103 | 0.03 | 360 |
|  | 103-104 | 0.03 | 300 |
|  | 104-105 | 0.05 | 310 |
|  | 105-106 | 0.07 | 290 |
|  | 106-107 | 0.05 | 240 |
|  | 107-108 | 0.42 | 170 |
|  | 108-109 | 0.32 | 190 |
|  | 109-110 | 0.15 | 190 |
|  | 110-111 | 0.14 | 220 |
|  | 111-112 | 0.14 | 260 |
|  | 112-113 | 0.10 | 260 |
|  | 113-114 | 0.55 | 220 |
|  | 114-115 | 0.23 | 1290 |
|  | 115-116 | 0.29 | 330 |
|  | 116-117 | 1.54 | 1050 |
|  | 117-118 | 0.74 | 460 |
|  | 118-119 | LNR | LNR |
|  | 119-120 | 0.57 | 250 |
|  | 120-121 | 0.86 | 240 |
|  | 121-122 | 0.43 | 300 |
|  | 122-123 | 0.76 | 190 |
|  | 123-124 | 0.54 | 160 |
|  | 124-125 | 0.14 | 90 |
|  | 125-126 | 0.09 | 80 |
|  | 126-127 | 0.07 | 80 |
|  | 127-128 | 0.06 | 260 |
|  | 128-129 | 0.09 | 340 |
|  | 129-130 | 0.03 | 290 |
|  | 130-131 | 0.04 | 130 |
|  | 131-132 | 0.03 | 90 |
|  | 132-133 | 0.04 | 70 |
|  | 133-134 | 0.02 | 80 |
|  | 134-135 | X | 60 |
|  | 135-136 | 0.03 | 170 |
|  | 136-137 | 0.25 | 170 |
|  | 137-138 | 0.07 | 110 |
|  | 138-139 | 0.01 | 60 |
|  | 139-140 | X | 60 |
|  | 140-141 | 0.01 | 70 |
|  | 141-142 | X | 80 |


| Hole No | Intersection | \% Cu | ppm Co |
| :---: | :---: | :---: | :---: |
| DORC 111 | 142-143 | X | 100 |
|  | 143-144 | X | 110 |
|  | 144-145 | X | 110 |
|  | 145-146 | X | 130 |
|  | 146-147 | X | 100 |
|  | 147-148 | X | 50 |
|  | 148-149 | 0.01 | 80 |
|  | 149-150 | X | 40 |
|  | 150-151 | X | 60 |
|  | 151-152 | X | 50 |
|  | 152-153 | X | 50 |
|  | 153-154 | X | 80 |
|  | 154-155 | X | 60 |
|  | 155-156 | X | 80 |
|  | 156-157 | X | 60 |
|  | 157-158 | 0.01 | 80 |
|  | 158-159 | 0.01 | 70 |
|  | 159-160 | X | 80 |
|  | 160-161 | X | 70 |
|  | 161-162 | X | 150 |
|  | 162-163 | X | 80 |
|  | 163-164 | X | 70 |
|  | 164-165 | 1.70 | 130 |
|  | 165-166 | 0.77 | 120 |
|  | 166-167 | 0.50 | 140 |
|  | 167-168 | 0.25 | 130 |
|  | 168-169 | 0.29 | 180 |
|  | 169-170 | 0.42 | 60 |
|  | 170-171 | 0.03 | 100 |
|  | 171-172 | 0.18 | 190 |
|  | 172-173 | 0.25 | 180 |
|  | 173-174 | 0.06 | 230 |
|  | 174-175 | 0.34 | 220 |
|  | 175-176 | 0.13 | 240 |
|  | 176-177 | 0.05 | 250 |
|  | 177-178 | 0.08 | 290 |
|  | 178-179 | 0.04 | 940 |
|  | 179-180 | 0.04 | 430 |
|  | 180-181 | 0.04 | 980 |
|  | 181-182 | 0.04 | 320 |
|  | 182-183 | 0.02 | 190 |
|  | 183-184 | 0.06 | 120 |
|  | 184-185 | 0.02 | 80 |
|  | 185-186 | 0.02 | 70 |
|  | 186-187 | 0.02 | 40 |
|  | 187-188 | 0.02 | 50 |
|  | 188-189 | 0.02 | 60 |
|  | 189-190 | 0.06 | 50 |
|  | 190-191 | 0.07 | 30 |


| Hole No | Intersection | \% Cu | ppm Co |
| :---: | :---: | :---: | :---: |
| DORC 111 | 191-192 | 0.06 | 50 |
|  | 192-193 | 0.02 | 50 |
|  | 193-194 | 0.16 | 80 |
|  | 194-195 | 0.04 | 70 |
|  | 195-196 | 0.03 | 130 |
|  | 196-197 | 7.75 | 320 |
|  | 197-198 | 5.14 | 180 |
|  | 198-199 | 3.30 | 140 |
|  | 199-200 | 0.59 | 100 |
|  | 200-201 | 0.22 | 210 |
|  | 201-202 | 0.55 | 150 |
|  | 202-203 | 1.86 | 90 |
|  | 203-204 | 1.30 | 50 |
|  | 204-205 | 0.84 | 30 |
|  | 205-206 | 0.84 | 40 |
|  | 206-207 | 0.29 | 30 |
|  | 207-208 | 0.15 | 30 |
|  | 208-209 | 0.49 | 50 |
|  | 209-210 | 0.26 | 40 |
|  | 211-211 | 0.33 | 20 |
|  | 211-212 | 0.15 | 20 |
|  | 212-213 | 0.28 | 20 |
|  | 213-214 | 0.24 | 20 |
|  | 214-215 | 3.43 | 70 |
|  | 215-216 | 1.31 | 30 |
|  | 216-217 | 0.18 | 10 |
|  | 217-218 | 0.12 | 20 |
|  | 218-219 | 0.34 | 20 |
|  | 219-220 | 0.24 | 130 |
|  | 220-221 | 3.21 | 210 |
|  | 221-222 | 0.36 | 170 |
|  | 222-223 | 0.16 | 270 |
|  | 223-224 | 0.07 | 110 |
|  | 224-225 | 0.10 | 30 |
|  | 225-226 | 1.32 | 70 |
|  | 226-227 | 2.38 | 160 |
|  | 227-228 | 0.71 | 60 |
|  | 228-229 | 1.40 | 100 |
|  | 229-230 | 1.15 | 70 |
|  | 230-231 | 0.90 | 50 |
|  | 231-232 | 0.68 | 40 |
|  | 232-233 | 0.74 | 40 |
|  | 233-234 | 0.94 | 40 |
|  | 234-235 | 0.49 | 30 |
|  | 235-236 | 0.39 | 30 |
|  | 236-237 | 0.36 | 30 |
|  | 237-238 | 0.62 | 30 |
|  |  |  |  |
|  |  |  |  |


| Hole No | Intersection | \% Cu | ppm Co |
| :---: | :---: | :---: | :---: |
| DORC 110 | $45-46$ | 0.33 | 800 |
|  | $46-47$ | 0.87 | 950 |
|  | $47-48$ | 0.76 | 2720 |
|  | $48-49$ | 0.84 | 2280 |
|  | $49-50$ | 0.63 | 720 |
|  | $50-51$ | 0.75 | 1050 |
|  | $51-52$ | 1.31 | 1580 |
|  | $52-53$ | 1.05 | 1730 |
|  | $53-54$ | 0.38 | 1360 |
|  | $54-55$ | 0.23 | 830 |
|  | $55-56$ | 0.13 | 700 |
|  | $56-57$ | 0.20 | 910 |
|  | $57-58$ | 0.34 | 770 |
|  | $58-59$ | 0.13 | 610 |
|  | $59-60$ | 0.12 | 440 |
|  | $60-61$ | 0.10 | 420 |
|  | $61-62$ | 0.68 | 620 |
|  | $62-63$ | 0.27 | 910 |
|  | $63-64$ | 0.71 | 180 |
|  | $64-65$ | 0.43 | 370 |
|  | $65-66$ | 0.45 | 260 |

