ASX Code: POZ

Trenching Discovers New and Extensive Shallow Gravel Targets at Blina Diamond Project - Amended

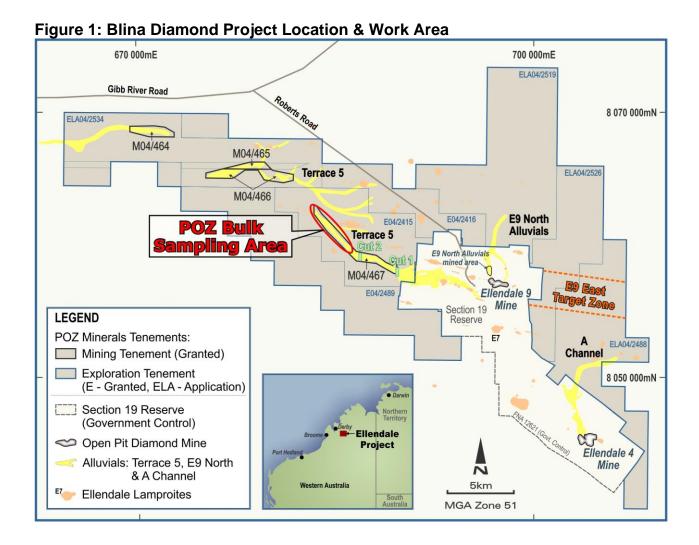
This ASX release has been amended from the original which was dated 6 August 2018. This release now includes JORC Exploration Targets for the new gravel target areas and supporting information. This updated information also applies to the POZ presentation released to ASX 26 October 2018.

HIGHLIGHTS

- Trenching program identifies new and extensive areas of untested, shallow alluvial gravels in historically diamondiferous channel complex, 12km west of the previous Ellendale 9 diamond mine.
- 209 metres of trenching across twelve sites has exposed areas of highly prospective, free digging gravels (do not require blasting) within 0.3 metre of the surface.
- Much of the material previously logged as weathered material, has been reinterpreted as alluvial gravels (with laterite overprint), greatly increasing the area and thickness of the diamondiferous gravel target zones.
- Numerous target sites confirmed with excellent bedrock features for bonanza grade 'trap sites' to occur.
- In the light of these trenching results the Company now proposes to pursue an expanded bulk sampling of all prospective gravels in the Blina area.

Photo 1: Trenching Underway at POZ Blina Diamond Project

POZ Geologist Michael Denny conducting recent trenching operations at Blina


1/16 Ord Street

West Perth WA 6005

Trench 2, a new and untested gravel terrain has been defined with rounded gravel clasts within 0.3 of a metre from surface

1.0 Introduction: Blina Diamond Project, WA

POZ 100%

POZ Minerals Limited ('POZ' or the 'Company') Blina Diamond Project in the Ellendale Diamond Province of WA's Kimberley Region is 100% owned by POZ. The project consists of four granted mining leases and various exploration leases within an area of 436 km², situated 110km east of Derby.

A diamond bearing alluvial palaeochannel named Terrace 5 extends over some 40km of the POZ project area, with ancient gravel areas still to be defined. The largest diamond recovered to date from Terrace 5 weighed 8.43 carats¹, with stones larger than two carats common, a significant number of the stones are Fancy Yellows.

A recent POZ Minerals trenching program to ground truth various targets has discovered extensive areas of unsampled, shallow and highly prospective alluvial gravels.

2.0 Blina Phase 1 Trenching Operations

The Company is pleased to announce the completion of a highly successful trenching program which commenced on 24 July at the Blina Diamond Project. The aim of this program was to test and delineate the geology of diamond bearing target channels and trap sites to assist in planning future bulk sampling operations.

A total of 12 Trenches were excavated for 209 metres in length. All the trenches have been logged and recorded and the deeper trenches have been backfilled and rehabilitated. Some shallower trenches remain open and these have been bunded for safety purposes.

These trenching operations have identified extensive new areas of previously untested, shallow and highly prospective gravels, all of which are free dig (they do not require blasting). The shallowest of these areas (in Trench 1) are within 0.3 of a metre from the surface. No water was encountered in any of the trenches.

Table 1: Summary of POZ Trenching Results

Trench	Area	Gravel Depth from Surface		Gravel Thi	Trench Length	
Number		From (m)	To (m)	From (m)	To (m)	(m)
Trench 1	Gravel Target A	0.3	0.6	0.8	2.0	64
Trench 2	Gravel Target A	0.4	0.5	1.1	2.0	20
Trench 3	Gravel Target A	0.3	0.4	1.0	1.5	25
Trench 4	Channel 1	1.2	1.4	1.1	1.3	20
Trench 5	Channel 1	1.0	1.1	1.1	1.2	12
Trench 6	Channel 1	1.1	1.2	0.5	1.3	10
Trench 7	Channel 1	1.1	1.2	2.1	2.2	12
Trench 8	Channel 1	0.9	1.2	1.6	1.7	14
Trench 9	Channel 1	1.3	1.6	1.2	1.4	9
Trench 10	Channel 1	3.0	3.1	2.5	2.9	11
Trench 11	Channel 2	0.2	0.3	1.5	2.0	10
Trench 12	Channel 1	Gravels appear to have been altered to duricrust, not suitable for bulk sampling			2	
		S				
Total						209

Videos of the trenching operations are available on the Company's website <u>click here.</u>

2.1 Lateritic Overprinting of Alluvial Gravels

POZ geologists have concluded that some of the material which was previously logged as laterite/pisolite/mottled zone is in fact alluvial gravel which has been overprinted by a lateritisation (chemical weathering) event(s) which gives a mottled appearance.

Upon careful inspection, alluvial textures and exotic clasts of rounded quartz and basement are visible within these shallow areas. These lateritised gravels grade downwards into fresher and more obvious gravels (Figure 3).

This is of great importance because it means that much of the material previously logged as laterite/mottled zone may in fact be diamondiferous alluvial gravel. This breaks open the project area to new exploration and targeting, because it greatly increases the areas and thicknesses of alluvial gravel targets.

The laterite pisolites (rounded iron pea type material) within the gravels appear to have two sources:

- Transported pisolites from the Permian (circa 300 Ma) which have become part of the alluvial gravel wash which may also contain alluvial diamonds.
- In-situ Miocene (circa 5-22 Ma) pisolites which have formed in-situ as part of the lateritisation process which post-dates the alluvial gravels. These pisolites tend to be more in the upper (more lateritic) portions of the gravels.

The duricrust material which overlies the laterite is an iron hardcap or ferricrete, it is massive and is not suitable for bulk sampling operations as it is difficult to treat.

3.0 Gravel Target Areas A & B

Observations from the POZ trenching and a re-interpretation of the logs from previous pitting operations have been used to define two new target areas: Gravel Target Areas A and B.

A JORC Exploration Target has been estimated for the volume of gravels within these two areas.

3.1 Gravel Target Area A Exploration Target

The JORC Exploration Target for Gravel Target Area A is from 2,400,000 cubic metres to 4,800,000 cubic metres of gravel at a grade range of between 0.0 to 50.0 carats per hundred cubic metres (cpmh³). The potential quantity and grade of this Exploration Target is conceptual in nature, there has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

3.2 Gravel Target Area B Exploration Target

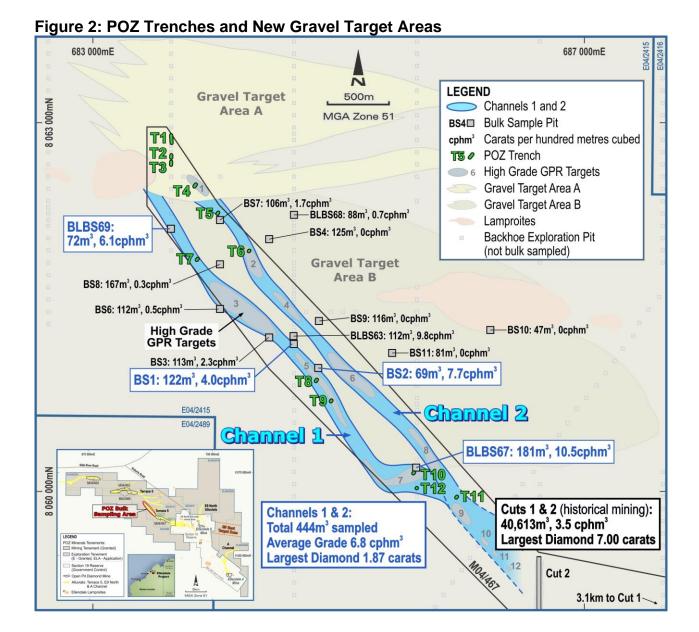
The JORC Exploration Target for Gravel Target Area B is from 2,150,000 cubic metres to 3,870,000 cubic metres of gravel at a grade range of between 0.0 to 50.0 carats per hundred cubic metres (cpmh³). The potential quantity and grade of this Exploration Target is conceptual in nature, there has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

Table 2: Target Areas A and B - Exploration Target

Location	Gravel Thickness		Gravel Area	Gravel Volume Range		Grade range	
	From	То	Target	From	То	From	То
	m	m	m ²	m ³		cph	m³*
Area A	0.8	2.5	2,400,000	1,920,000	4,800,000	0	50
Area B	0.5	1.8	4,300,000	2,150,000	3,870,000	0	50

^{*} Carats per hundred cubic metres

3.3 Assumptions


For the purposes of calculating the Exploration Targets for Areas A and B, a number of assumptions have been made, these include:

- Due to the extreme nugget effect which alluvial diamonds can display, the above grades may vary considerably within the area. Smaller areas of extremely high grade material may be interspersed with larger areas of lower grade or zero grade material. For this reason, the diamond grades should not necessarily be multiplied by volumes, especially for the higher grade material; the grade range is only indicative of grades that may be encountered within the gravel volume range.
- The gravel area is based upon the observed gravel thicknesses in POZ Trenches (Table 1), historic bulk sample pits and historic backhoe exploration pits (Appendices A&B) which were interpreted using logsheets from these activities.
- Exploration Target grade range is based upon nearby sampled grades within very similar or identical alluvial gravel geology. Samples taken from nearby test pits (Figure 2) returned grades up to 9.8cphm³ so it could be reasonably assumed that grades considerably higher (five times is used, but it could be higher) than this could be encountered in good alluvial trap sites. This assumption is supported by the observations from the POZ Trenching program which encountered bedrock features which were consistent with good alluvial trap sites, but which are as yet unsampled. POZ ASX Release dated 18 October 2017 outlines this mechanism.
- A JORC Exploration Target for the whole of the defined Terrace 5 Alluvial channel
 is available in the POZ <u>ASX Release</u> dated 22 November 2017. This document
 addresses the potential of high grade 'bonanza' potholes being targeted using
 ground penetrating radar surveys. Araes A and B within this report have not, as yet,
 had the benefit of ground penetrating radar data and as a result, the JORC
 Exploration Target model within this report does not include the bonanza-type
 grades of the 22 November report, although that does not mean they do not exist
 on the area.
- The aim of the upcoming 2019 POZ bulk sampling field program is to delineate the higher grade material within these (and other) gravel target areas as quickly and efficiently as possible, with a view to trial mining the best grades.

3.4

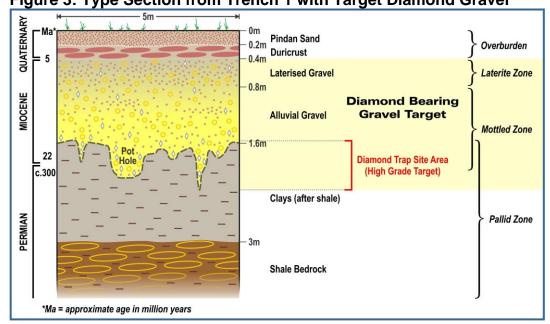
Gravel Target Area A Geology

Gravel Target Area A is 2.4 million square metres of interpreted alluvial gravels, with gravel thicknesses estimated at between 0.8 and 2.5 metres (average 1.3 metres). No bulk sampling has been conducted over this area and these highly prospective gravels are completely untested. The gravels are extremely shallow being within 0.3 of a metre from the surface as observed in POZ Trenches and around two to three metres from the surface over other parts of Area A as interpreted from previous backhoe exploration pit logs (Figure 2).

POZ Trenches 1, 2, 3 and 4 intersected Area A type gravels and an interpretation of the geology within Trench 1 is shown in Figure 3. The gravels average around 60% clasts and 40% matrix and are mostly clast supported. Gravel clasts are approximately 70% laterite pisolites, 23% shale, 3% sandstone and 3% quartz. Clasts are 3mm to 150mm, well rounded to sub-angular. The matrix is an orangey-red, silty sandy clay.

This area shows excellent potential as a target for diamond bearing alluvial gravels, especially due to its shallowness, prospective geology and trap sites, gravel quality and proximity to the diamond bearing Channel 1 gravels.

Trench 1 showing pothole type


trap site in gravel

Gravel Target Area A - Untested Gravels in Trenches 1 and 4: Trench 1 rounded gravel clasts Trench 1, Alluvial gravels within 30cm of surface ALLUVIAL GRAVEL POTHOLE PERMIAN BASEMENT

Figure 3: Type Section from Trench 1 with Target Diamond Gravel

Trench 4 rounded gravel clasts, many of which are

partly saprolitised (turned to clay by weathering)

3.5 Gravel Target Area B

Gravel Target Area B targets approximately 4.3 million square metres of interpreted alluvial gravels with gravel thicknesses estimated as between 0.5 and 1.8 metres (average 1.2 metres). The gravels are shallow being on average within two to four metres of the surface.

POZ did not Trench Target Area B, however the lessons learned from the other POZ trenches, especially the proximal Channel 2 trenches, have been used to re-interpret the data from previous operators extensive pitting operations (Figure 2) and generate Target Area B.

Very limited bulk sampling has been conducted by previous operators over Area B. The best result was Bulk Sample 63 which returned a grade of 9.8 carats per hundred cubic metres with the largest diamond being 2.85 carats. Average stone size was 0.58 carats.

The eight previous samples taken over Area B totalled 842 cubic metres of treated material. The Company considers this to be a manifestly inadequate number of samples and volume of material for a target area of over 4.3 million square metres.

All of the results from Area B bulk sampling operations are shown on Figure 2, these were reported in the POZ ASX Release dated 18 October 2017⁴.

4.0 Channels 1 and 2 - POZ Trenching Activity

POZ divided the original Terrace 5 area into two channels (1 and 2) based upon Ground Penetrating Radar (GPR)⁴ results and these two channels were partially tested by the recent POZ trenching program (Figure 2).

Trenches 5 to 11 were dug into Channels 1 and 2 and all of these trenches encountered alluvial gravels (Table 1) which are prospective for diamonds and need to be tested by future bulk sampling operations. At Trench 12, the alluvial gravels had been turned into duricrust as a result of the lateritisation process, these gravels are massive and blocky and are not suitable for bulk testing.

Very limited bulk sampling has been conducted by previous operators over Channel 1 where a total of four bulk sample were taken with the results shown in Table 2. The best result was Bulk Sample 67 which returned a grade of 10.5 carats per hundred cubic metres with the largest diamond being 1.42 carats, average stone size was 0.4 carats.

All of the results from the previous bulk sampling operations are shown on Figure 2, these were reported with JORC Table 1 in the POZ ASX Release dated <u>18 October 2017</u>⁴.

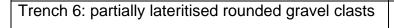
Table 2: Previous Diamond Bulk Sampling Results from Channel 1

Bulk	Sample Volume	Diamonds Recovered	Diamond Grade	Average Diamond Size	Largest Diamond
Sample ID	(cubic metres)	(carats)	(carats per hundred cubic metres)	(carats)	(carats)
BLBS067	181	18.98	10.5	0.40	1.42
BLBS069	72	4.39	6.1	0.63	1.87
BS1	122	4.95	4.0	0.31	1.57
BS2	69	5.34	7.7	0.38	1.03
Total	444	33.66	6.8	0.43	1.87

NB: Pits prefaced with BLBS were Kimberley Diamonds Limited

Pits prefaced with BS were Diamond Ventures NL

Screen size +1.5mm to 10.0mm


Average diamond size is not weighted

The four previous samples taken in Channel 1 totaled 444 cubic metres. The Company considers this to be too small a volume of sampled material to determine representative diamond grades for a target area which is over 450,000 square metres.

Channel 2 covers an area of 520,000 square metres, this area has never been bulk sampled and is untested.

Gravel Target Area B - Gravels in Trenches 6 and 7:

Trench 7: alluvial gravels with rounded cobbles

5.0 Ground Penetrating Radar and Trenching

The recent POZ trenching has been a useful exercise in calibrating the earlier Ground Penetrating Radar (GPR) geophysics work⁴ and a number of valuable observations have been made:

- Depending on the area which is being tested, the GPR has been effective at picking the bedrock/cover (gravel or alluvium) interface.
- In some areas, the GPR is modelling the fresh bedrock weathered bedrock (saprolite) contact.
- The GPR appears to pick up the duricrust (laterite hard cap) effectively.

High grade targets modelled from GPR were tested by Trenches 4, 6, 8, 9 and 10 and all of these trenches successfully intersected alluvial gravels and at shallower depths (Table 1) than were modelled, which perhaps indicates the GPR is showing deeper targets than is the actual case.

However, only small areas of these GPR targets were able to be tested by this limited program and the deepest GPR targets require some element of overburden stripping which this trenching program did not have the capacity to accomplish. These deeper targets will be the objective of future programs. Further delineation of these deeper targets by pitting (preferably in conjunction with bulk sampling) is still required to better assess these potential trap sites.

The GPR has shown itself to be a valuable tool in assessing the geology of the area, further work is required in reconciling the GPR with various trenching data and how the GPR responds to the different terrains and variable weather and groundwater conditions at Blina.

6.0 Summary and Lookahead

Very large areas of untested or inadequately tested diamond gravel targets have been defined by the recent trenching program and by re-interpretation of earlier work. The Company believes that a systematic program of bulk testing of these gravels is required over Gravel Targets A and B and Channels 1 and 2 in order to determine representative diamond grades. Some of the previous tested grades from these areas are extremely encouraging with up to 10.5 carats per hundred cubic metres.

In the light of these trenching results the Company now proposes to pursue an expanded program of systematic bulk sampling of prospective gravels in the Blina area in 2019 to define the extent and grade of diamondiferous gravels in the Blina area, the best sampled grades would then be trial mined. To this end POZ is currently progressing funding options.

Jim Richards
Executive Chairman
POZ Minerals Limited

References:

¹Further detailed information including the Table 1 (JORC Code, 2012 Edition) and references are available on the POZ ASX Release dated 9 October 2015 click here

²Blina Diamonds NL Annual Report 2007

³Kimberley Diamonds Ltd (ASX: KDL) ASX/Media Release dated 11 June 2013

⁴Blina Diamond Project, Gamechanger GPR Survey; POZ ASX Release dated 18 October 2017 click here

⁵Blina Diamond Project Fancy Yellows Value; POZ ASX Release dated 6 November 2017 click here.

Maiden JORC Exploration Target; POZ ASX Release dated 21 November 2017 click here

Bulletin 132 (Geological Survey of Western Australia); The kimberlites and lamproites of Western Australia by A.L. Jaques, J.D. Lewis and C.B. Smith.

The information in this report that relates to current and previously reported exploration results and the JORC Exploration Target is based on information compiled by Mr. Jim Richards who is a Member of The Australasian Institute of Mining and Metallurgy and a Member of the Australian Institute of Geoscientists. Mr. Richards is a Director of POZ Minerals Limited. Mr. Richards has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Richards consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

^AThe Company is not aware of any new information or data that materially affects the information included in the previously reported exploration and production data (JORC 2004) and that all of the previous assumptions and technical parameters underpinning the estimates in the previous announcement/year have not materially changed

No New Information

To the extent that the announcement contains references to prior technical information, exploration results and mineral resources; these have been cross referenced to previous market announcements made by the Company. These had been disclosed to JORC 2012 standard. Unless explicitly stated, no new information is contained. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements that assumptions and technical parameters underpinning the relevant market announcement continue to apply and have not materially changed.

APPENDIX A: Locations of Centroids for POZ Pitting Program

					Trench
Trench Number	Trend	ch start	Tren	Length	
	mE	mN	mE	mN	m
Trench 1	683637	8062899	683641	8062835	64
Trench 2	683638	8062715	683638	8062735	20
Trench 3	683637	8062657	683637	8062682	25
Trench 4	683826	8062481	683838	8062497	20
Trench 5	684013	8062258	684020	8062268	12
Trench 6	684269	8061955	684273	8061959	10
Trench 7	683845	8061883	683853	8061893	12
Trench 8	684814	8060898	684823	8060909	14
Trench 9	684937	8060733	684942	8060740	9
Trench 10	685608	8060147	685615	8060155	11
Trench 11	685957	8059950	685963	8059958	10
Trench 12	685635	8060026	685636	8060028	2
MGA94 zone 51				Total	209

Appendix B: Locations of Bulk Sample Pits and Backhoe Pits

Pit ID	Accession	Easting	Northing	Dit Tune	Dist	A = 1 + l-	Donth
PIT ID	Number	MGA94 z51	MGA94 z51	Pit Type	Dip	Azimuth	Depth
BP1330	a61480	683637	8063761	Backhoe pit	-90	0	4.3
BP1331	a61480	683637	8063661	Backhoe pit	-90	0	3.8
BP1332	a61480	683637	8063561	Backhoe pit	-90	0	3.7
BP1333	a61480	683637	8063461	Backhoe pit	-90	0	4.1
BP1334	a61480	683637	8063361	Backhoe pit	-90	0	4.2
BP1335	a61480	683637	8063261	Backhoe pit	-90	0	4.0
BP1336	a61480	683637	8063161	Backhoe pit	-90	0	3.4
BP1345	a61480	684637	8063761	Backhoe pit	-90	0	5.9
BP1346	a61480	684637	8063661	Backhoe pit	-90	0	4.8
BP1347	a61480	684637	8063561	Backhoe pit	-90	0	4.6
BP1348	a61480	684637	8063461	Backhoe pit	-90	0	4.8
BP1349	a61480	684637	8063361	Backhoe pit	-90	0	4.8
BP1350	a61480	684637	8063261	Backhoe pit	-90	0	6.0
BP1351	a61480	684637	8063161	Backhoe pit	-90	0	5.0
BP1352	a61480	684637	8063061	Backhoe pit	-90	0	5.2
BP1353	a61480	684637	8062961	Backhoe pit	-90	0	5.4
BP1354	a61480	684637	8062861	Backhoe pit	-90	0	6.3
BP1355	a61480	684637	8062761	Backhoe pit	-90	0	6.4
BP1356	a61480	684637	8062661	Backhoe pit	-90	0	6.5
BP1357	a61480	684637	8062911	Backhoe pit	-90	0	5.3
BP1362	a61480	685637	8063761	Backhoe pit	-90	0	6.3
BP1363	a61480	685637	8063661	Backhoe pit	-90	0	5.3
BP1364	a61480	685637	8063561	Backhoe pit	-90	0	6.0
BP1365	a61480	685637	8063461	Backhoe pit	-90	0	6.0
BP1366	a61480	685637	8063361	Backhoe pit	-90	0	5.7
BP1367	a61480	685637	8063261	Backhoe pit	-90	0	5.4
BP1368	a61480	685637	8063161	Backhoe pit	-90	0	5.3
BP1369	a61480	685637	8063061	Backhoe pit	-90	0	5.8
BP1370	a61480	685637	8062961	Backhoe pit	-90	0	5.1
BP1371	a61480	685637	8062861	Backhoe pit	-90	0	5.0
BP1372	a61480	685637	8062761	Backhoe pit	-90	0	6.2
BP1373	a61480	685637	8062661	Backhoe pit	-90	0	6.5
BP1380	a61480	685387	8063811	Backhoe pit	-90	0	4.8

BP1381	a61480	685387	8063711	Backhoe pit	-90	0	5.3
BP1383	a61480	685637	8063811	Backhoe pit	-90	0	6.2
BP1386	a61480	685637	8062361	Backhoe pit	-90	0	5.3
BP1388	a61480	685637	8062561	Backhoe pit	-90	0	6.6
BP1408	a61480	686637	8062761	Backhoe pit	-90	0	6.7
BP1409	a61480	686637	8062961	Backhoe pit	-90	0	5.7
BP1410	a61480	686637	8062861	Backhoe pit	-90	0	5.6
BP1411	a61480	686637	8062661	Backhoe pit	-90	0	7.2
BP1412	a61480	686637	8062561	Backhoe pit	-90	0	4.2
BP1413	a61480	686637	8062461	Backhoe pit	-90	0	5.1
BP1414	a61480	686637	8062361	Backhoe pit	-90	0	5.2
BP1415	a61480	686637	8062261	Backhoe pit	-90	0	5.2
BP1416	a61480	686637	8062161	Backhoe pit	-90	0	5.4
BP1417	a61480	686637	8062061	Backhoe pit	-90	0	5.5
BP1418	a61480	686637	8061961	Backhoe pit	-90	0	6.7
BP1419	a61480	686637	8061861	Backhoe pit	-90	0	5.6
BP1420	a61480	687637	8061861	Backhoe pit	-90	0	6.3
BP1421	a61480	687637	8061961	Backhoe pit	-90	0	11.2
BP1422	a61480	687637	8062061	Backhoe pit	-90	0	9.9
BP1423	a61480	687637	8062161	Backhoe pit	-90	0	10.4
BP1436	a61480	687687	8061961	Backhoe pit	-90	0	11.0
BP1495	a61480	683737	8062561	Backhoe pit	-90	0	4.0
BP1496	a61480	683837	8062561	Backhoe pit	-90	0	4.0
BP1497	a61480	684037	8062561	Backhoe pit	-90	0	2.5
BP1498	a61480	683637	8062561	Backhoe pit	-90	0	4.1
BP1502	a61480	685137	8062361	Backhoe pit	-90	0	2.6
BP1503	a61480	685037	8061461	Backhoe pit	-90	0	3.3
BP1503	a61480	684937	8061461	Backhoe pit	-90	0	3.4
BP1505	a61480	684837	8061461	Backhoe pit	-90	0	2.4
BP1506	a61480	684737	8061461	Backhoe pit	-90	0	4.0
BP1507	a61480	684637	8061461	Backhoe pit	-90	0	4.5
BP1581	a62589	685928	8059259	Backhoe pit	-90	0	5.6
BP1582	a62589	686003	8059259	Backhoe pit	-90	0	3.8
BP1583	a62589	686068	8059359	Backhoe pit	-90	0	4.0
BP1584	a62589	686138	8059559	Backhoe pit	-90	0	4.4
BP1585	a62589	686218	8059659	Backhoe pit	-90	0	6.0
BP1586	a62589	686298	8059759	Backhoe pit	-90	0	5.8
BP1587	a62589	686358	8059859	Backhoe pit	-90	0	8.0
BP1588	a62589	686438	8059959	Backhoe pit	-90	0	7.2
BP1589	a62589	686498	8060059	Backhoe pit	-90	0	6.4
						0	
BP1590	a62589	686588	8060159	Backhoe pit Backhoe pit	-90 -90		8.5 7.0
BP1591	a62589	686653	8060259		-90 -90	0	7.9
BP1592	a62589	686723	8060359	Backhoe pit	-90	0	7.2
BP1593	a62589	686793	8060459	Backhoe pit	-90	0	6.3
BP1594	a62589	686863	8060559	Backhoe pit	-90	0	6.2
BP1595	a62589	686938	8060674	Backhoe pit	-90	0	4.9
BP1596	a61480	687017	8060761	Backhoe pit	-90	0	5.5
BP1597	a61480	687097	8060861	Backhoe pit	-90	0	5.6
BP1598	a61480	687172	8060961	Backhoe pit	-90	0	6.8
BP1599	a61480	687247	8061061	Backhoe pit	-90	0	6.7
BP1600	a61480	687312	8061161	Backhoe pit	-90	0	4.7
BP1601	a61480	687397	8061266	Backhoe pit	-90	0	4.6
BP1602	a61480	687447	8061371	Backhoe pit	-90	0	6.9
BP1603	a61480	687520	8061481	Backhoe pit	-90	0	7.0
BP1604	a62589	687758	8061774	Backhoe pit	-90	0	5.4

BP1605	a62589	687688	8061679	Backhoe pit	-90	0	5.6
BP1606	a61480	687607	8061581	Backhoe pit	-90	0	6.9
BP1609	a61480	684637	8061361	Backhoe pit	-90	0	7.1
BP1610	a61480	684637	8061561	Backhoe pit	-90	0	5.0
BP1611	a61480	684637	8061661	Backhoe pit	-90	0	6.7
BP1612	a61480	684637	8061761	Backhoe pit	-90	0	5.5
BP1613	a61480	684637	8061861	Backhoe pit	-90	0	6.8
BP1614	a61480	684637	8061961	Backhoe pit	-90	0	5.7
BP1615	a61480	684637	8062061	Backhoe pit	-90	0	5.4
BP1616	a61480	684637	8061811	Backhoe pit	-90	0	5.3
BP1617	a61480	684637	8061711	Backhoe pit	-90	0	6.3
BP1618	a61480	684637	8061611	Backhoe pit	-90	0	5.7
BP1619	a61480	684637	8061511	Backhoe pit	-90	0	5.6
BP1620	a61480	684637	8061411	Backhoe pit	-90	0	5.4
BP1621	a61480	684637	8061311	Backhoe pit	-90	0	5.4
BP1622	a61480	684637	8061261	Backhoe pit	-90	0	6.0
BP1623	a61480	684637	8061211	Backhoe pit	-90	0	5.0
BP1624	a61480	684637	8061161	Backhoe pit	-90	0	4.9
BP1625	a61480	684637	8061061	Backhoe pit	-90	0	4.8
BP1626	a61480	684637	8060961	Backhoe pit	-90	0	5.6
BP1627	a61480	684637	8060861	Backhoe pit	-90	0	3.4
BP1628	a61480	684637	8060761	Backhoe pit	-90	0	4.2
BP1629	a62589	684638	8060659	Backhoe pit	-90	0	5.4
BP1630	a62589	684638	8060559	Backhoe pit	-90	0	6.6
BP1696	a62589	686638	8060059	Backhoe pit	-90	0	9.0
BP1697	a62589	686638	8059959	Backhoe pit	-90	0	9.0
BP1698	a62589	686638	8059859	Backhoe pit	-90	0	7.3
BP1699	a62589	686638	8059759	Backhoe pit	-90	0	7.2
BP1700	a62589	686638	8059659	Backhoe pit	-90	0	8.3
BP1700	a62589	686638	8059559	Backhoe pit	-90	0	7.3
BP1701	a61480	685637	8061661	Backhoe pit	-90	0	6.1
BP1717	a61480	685637	8061561	Backhoe pit	-90	0	5.2
BP1717	a61480	685637	8061361	Backhoe pit	-90	0	4.2
BP1718 BP1719	a61480	685637	8061361	Backhoe pit	-90	0	3.4
BP1719 BP1720	a61480	685637		Backhoe pit		0	5.2
	a61480		8061261 8061161	Backhoe pit	-90	0	
BP1721 BP1722		685637 685637		•	-90	0	6.8
	a61480		8061061	Backhoe pit	-90		9.4 9.3
BP1723	a61480	685637	8060961	Backhoe pit	-90	0	
BP1724 BP1725	a61480 a61480	685637 685637	8060861 8060761	Backhoe pit Backhoe pit	-90 -90	0	6.4 3.5
BP1726	a62589	685638 685638	8060709	Backhoe pit Backhoe pit	-90	0	2.3
BP1727	a62589		8060659		-90 -90	0	4.8
BP1728	a62589	685638	8060559	Backhoe pit	-90	0	4.0
BP1729	a62589	685638	8060459	Backhoe pit	-90	0	5.0
BP1730	a62589	685638	8060359	Backhoe pit	-90	0	4.3
BP1731	a62589	685638	8060259	Backhoe pit	-90	0	5.6
BP1732	a62589	685638	8060159	Backhoe pit	-90	0	5.6
BP1733	a62589	685638	8060059	Backhoe pit	-90	0	4.5
BP1734	a62589	685638	8059959	Backhoe pit	-90	0	3.9
BP1735	a62589	685638	8059859	Backhoe pit	-90	0	3.7
BP1736	a62589	685638	8059759	Backhoe pit	-90	0	4.3
BP1737	a62589	685638	8059659	Backhoe pit	-90	0	4.0
BP1738	a62589	685638	8060209	Backhoe pit	-90	0	6.8
BP1739	a62589	685638	8060109	Backhoe pit	-90	0	5.6
BP1740	a61480	684637	8062061	Backhoe pit	-90	0	4.7

BP1741	a61480	684637	8062161	Backhoe pit	-90	0	4.6
BP1742	a61480	684637	8062261	Backhoe pit	-90	0	7.7
BP1743	a61480	684637	8062361	Backhoe pit	-90	0	6.4
BP1744	a61480	684637	8062461	Backhoe pit	-90	0	6.3
BP1745	a61480	684637	8062561	Backhoe pit	-90	0	6.2
BP1746	a61480	684637	8062211	Backhoe pit	-90	0	7.2
BP1747	a61480	684637	8062311	Backhoe pit	-90	0	6.6
BP1748	a61480	684637	8062111	Backhoe pit	-90	0	5.2
BP1749	a61480	683637	8062661	Backhoe pit	-90	0	3.4
BP1750	a61480	683637	8062761	Backhoe pit	-90	0	2.7
BP1751	a61480	683637	8062861	Backhoe pit	-90	0	3.0
BP1752	a61480	683637	8062961	Backhoe pit	-90	0	2.6
BP1753	a61480	683637	8063061	Backhoe pit	-90	0	2.9
BP1754	a61480	683637	8062811	Backhoe pit	-90	0	3.8
BP1755	a61480	683637	8062711	Backhoe pit	-90	0	3.1
BP1756	a61480	683637	8062561	Backhoe pit	-90	0	4.6
	a61480			Backhoe pit	-90	0	4.7
BP1757		683637	8062461	-	-90	0	3.7
BP1758	a61480 a61480	683637	8062361	Backhoe pit	-90	0	5.1
BP1759		683637	8062261	Backhoe pit			
BP1760	a61480	683637	8062161	Backhoe pit	-90	0	5.4
BP1761	a61480	683637	8062061	Backhoe pit	-90	0	5.6
BP1762	a61480	683637	8061961	Backhoe pit	-90	_	5.2
BP1763	a61480	683637	8062111	Backhoe pit	-90	0	5.0
BP1764	a61480	682637	8063261	Backhoe pit	-90	0	3.3
BP1765	a61480	682637	8063361	Backhoe pit	-90	0	3.8
BP1766	a61480	682637	8063461	Backhoe pit	-90	0	6.1
BP1767	a61480	682637	8063561	Backhoe pit	-90	0	5.4
BP1768	a61480	682637	8063661	Backhoe pit	-90	0	4.5
BP1769	a61480	682637	8063761	Backhoe pit	-90	0	3.5
BP1779	a61480	682637	8063161	Backhoe pit	-90	0	2.6
BP1780	a61480	682637	8063061	Backhoe pit	-90	0	3.0
BP1781	a61480	682637	8062961	Backhoe pit	-90	0	3.3
BP1782	a61480	682637	8062861	Backhoe pit	-90	0	2.9
BP1783	a61480	682637	8062761	Backhoe pit	-90	0	3.2
BP1784	a61480	682637	8062661	Backhoe pit	-90	0	3.7
BP1785	a61480	682637	8062561	Backhoe pit	-90	0	3.6
BP1786	a61480	682637	8062461	Backhoe pit	-90	0	3.9
BP1787	a61480	682637	8062361	Backhoe pit	-90	0	4.1
BLBS063	a64924	684636.2	8061259.97	Bulk sample	-90	0	5.5
BLBS067	a62589	685632.2	8060188.97	Bulk sample	-90	0	NR
BLBS068	a64924	684640.2	8062246.96	Bulk sample	-90	0	NR
BLBS069	a64924	683639.21	8062132.97	Bulk sample	-90	0	NR
BS1	a64924	684638.2	8061195.97	Bulk sample	-90	0	5.2
BS2	a64924	684838.2	8061000.98	Bulk sample	-90	0	4.6
BS3	a64924	684438.2	8061248.97	Bulk sample	-90	0	4.1
BS4	a64924	684438.2	8062048.96	Bulk sample	-90	0	3.2
BS6	a64924	684038.21	8061480.97	Bulk sample	-90	0	3.7
BS7	a64924	684038.21	8062203.97	Bulk sample	-90	0	3.8
BS8	a64924	684038.21	8061843.97	Bulk sample	-90	0	4.4
BS9	a64924	684843.2	8061382.97	Bulk sample	-90	0	3.9
BS10	a64924	686238.2	8061242.97	Bulk sample	-90	0	6.9
BS11	a64924	685439.2	8061122.97	Bulk sample	-90	0	2.5

NR - Depths not recorded

Bulk sample pit depths are measured from graphic logs

Appendix C
JORC Code, 2012 Edition – Table 1
Section 1 Sampling Techniques and Data
JORC Code, 2012 Edition – Table 1

This Table 1 refers to several generations of exploration work completed by POZ Minerals Limited, Kimberley Diamond Company (KDC), and Diamond Ventures (DV). **POZ** refers to POZ's trenching program undertaken between 24th – 28th July 2018.

DV revers to Accession Report a64924, a RAB drilling program undertaken by Diamond Ventures in the 2000 – 2001 reporting period

KDC refers to backhoe pit sampling reported in Accession Reports **a61480** (Annual Report for E04/813, 9/8/2000 – 8/8/2001) and **a62589** (C420/1995 Combined Annual Report, 24/2/2000 – 23/2/2001).

BLD refers to exploration by Blina Diamonds NL post 2005

Section 1 Sampling Techniques and Data

Criteria	Commentary
Sampling Techniques	POZ: The trenching program was undertaken for the purposes of geological mapping and gravel delineation. No sampling was undertaken. DV: RAB holes were drilled for geological mapping purposes. No sampling was undertaken. KDC: Backhoe pits were dug for geological mapping purposes. Heavy mineral samples were collected from a number of pits where gravels were identified, although POZ has not used these sample results as the Company deems they are not material to POZ's alluvial diamond exploration model or strategy.
Drilling Techniques	POZ: Trenching was undertaken using a 25 tonne Volvo EC240CL excavator using a ~2300mm batter bucket, a 1260mm GP bucket, and an 860mm trenching bucket. DV: 340 vertical RAB holes were drilled for a total of 2441m to map the distribution, length, and thickness of gravels. Holes were drilled on a nominal 200m x 50m grid with local infill drilling. KDC: Pits were excavated by a Caterpillar backhoe. In areas of hard laterite or deep sand an excavator was hired from Derby to excavate the pits.All pits were excavated to recognisable Palaeozoic basement and lithologically logged.
Drill sample Recovery	Not applicable.
Logging	POZ: Trenches were geologically logged during drilling. Mineral resource estimations and mining studies are not applicable at this stage of exploration, and metallurgical studies have already been undertaken. Where relevant, photos were taken of trenches and of trench lithologies. Rehabilitated (infilled and smoothed) trenches were photographed. DV: Drillholes were geologically logged. KDC: Backhoe pits were geologically logged.
	POZ: Trench logging was quantitative in nature. Information collected includes: weathering, lithology, colour, texture, mineralogy, gravel composition and percentage of clasts, interpretation, suggested sample intervals, comments. DV: logging was quantitative in nature. Information collected includes: weathering, lithology, colour, texture, mineralogy, gravel composition and percentage of clasts, comments. KDC: logging was quantitative in nature. Information collected includes: weathering, lithology, colour, texture, mineralogy, gravel composition and percentage of clasts, comments.
	All trenches, drillholes, and backhoe pits were logged in full.

Criteria	Commentary
Sub Sampling Techniques and Sample Preparation	No subsampling was undertaken.
Quality of assay data and laboratory tests	Not applicable: toPOZ trenches, RAB holes and backhoe pits which were dug to test geology. Previous bulk samples and trial mining from DV , KDC and BLD were reported in Table 1's in POZ ASX Releases dated 9 October 2015 & 22 November 2017
Verification of sampling and assaying	POZ: Not applicable. Logging data was initially recorded on paper logging sheets which have subsequently been scanned to pdf and saved on the Company server. Paper logs are stored in the POZ office. DV and KDC: Not recorded.
Location of Data points	Trench start points were captured at trench completion by hand-held GPS. DV: holes 001 – 140 located by DGPS with ±200mm absolute accuracy. Holes 141 – 340 located by handheld GPS. KDC: Not recorded. Grid system is MGA94 zone 51
	The terrain is generally flat. Topographic control is available via DEM and aerial photography and is deemed sufficient for this level of exploration result reporting.
Data spacing and	Trench, bulk sample pits and backhoe pit locations are shown in Figure 2 and Appendices A and B
distribution	Not applicable: POZ will not use these samples to as part of a Mineral Resource or Ore Reserve estimation procedure.
	No compositing has been applied.
Orientation of data in relation to	Trenches, RAB holes and backhoe pits are vertical whereas the palaeogravels they are mapping are horizontal. It is unlikely this will result in any sampling bias.
geological structure	Trenches, RAB holes and backhoe pits are orthogonal to Terrace 5 palaeogravels: no sampling bias is expected.
Sample Security	No samples were collected.
Audits or reviews	Not applicable.

Section 2 Reporting of Exploration Results

Criteria	Commentary
Mineral tenement and land tenure	M04/467 was granted on 13 th October 2017 with no conditions and is held 100% by POZ Minerals Limited.
status	M04/467 is granted with no impediments.
Exploration done	A number of companies have previously completed exploration in the Ellendale Field. The following is a summary of this work.
by other parties	Ashton Joint venture (1976-1988)
	Initial regional drainage diamond exploration program discovered Ellendale 4 (E4) pipe. Follow-up geophysical surveys discovered 40 more pipes; bulk sampling
	revealed significant diamond grades at E4 and E9.

Criteria	Commentary
	Stockdale Prospecting Limited (1987-1993) Regional loam sampling; airborne multi-spectral scanning; aeromagnetics; ground magnetics; SIROTEM; drilling; bulk sampling. Diamond Ventures/Ellendale Resources/Auridiam (1994-1997). Accession report a64924. Initial JV flew detailed low-level aeromagnetic survey, discovering five new lamproite pipes; bulk testing of pipes. Kimberley Diamond Company Limited (KDC) (1994-2004). Accession reports a42864, a47812, a51360, a54883, a57833, a59481, a59998, a61480, a62589, a64735, a64924. Airborne EM and magnetics with follow-up ground magnetics; gravity surveys; AC drilling to discover and delineate the Terrace 5 palaeodrainage gravels; exploration pitting and bedrock interface sampling; large-diameter drilling and bulk sampling; geochemical (termite nest and AC spoil) sampling programs; GPR trial; regional regolith mapping and Landsat imagery. KDC-Blina Diamonds NL (2004) Accession report a69826. Drilling of Falcon geophysical targets; heavy mineral sampling; termite mound geochemical sampling. Blina Diamonds NL (2005-2008) Accession reports a70125, a70543, a72738, a74960, a77881, a78278, a86615, a93271. Cut 1 and Cut 2 bulk samples; detailed aeromagnetic and ground magnetic surveys; AC drilling; bulk sampling and trenching; 1m and 2.5m Bauer rig drilling; geochemical, microdiamond, and indicator mineral sampling; excavator exploration test pitting.
Geology	The Blina Diamond Project is a diamond-bearing palaeogravel in which the majority of diamonds are derived from the Ellendale 9 lamproite pipe (POZ ASX announcement dated 06 November 2017, section 3.3).
Drillhole Information	See Appendix A
Data aggregation methods	These criteria are not applicable.
Relationship between mineralisation widths and intercept lengths	Reported gravel intercepts are true widths.
Diagrams	Refer to Figures, References and Appendices in body of text.
Balanced reporting	All trenches from this campaign are recorded in this Announcement.
Other substantive exploration data	See previous ASX announcements dated <u>9 October 2015</u> , <u>16 October 2017</u> , <u>18 October 2017</u> , <u>6 November 2017</u> , <u>22 November 2017</u> , <u>7 December 2017</u> , <u>12 February 2018</u> , <u>21 March 2018</u> , <u>30 April 2018</u> , <u>2 May 2018</u> , <u>18 May 2018</u> , <u>12 June 2018</u> , <u>19 June 2018</u> , <u>31 July 2018</u> , <u>6 August 2018</u> , <u>25 October 2018</u> , and <u>26 October 2018</u>
Further work	Depending on results, a full bulk sampling and trial mining operation is planned for Terrace 5 and other gravels within Exploration Target Areas A and B in 2019

END