ASX RELEASE.

ASX Announcement 2 May 2023

Catalina Resources is an Australian diversified mineral exploration and mine development company.

Directors

Executive Chairman and Company Secretary Sanjay Loyalka

Technical Director and Chief Geologist Michael Busbridge

Non-Executive Director Richard Beazley

ASX Code

CTN

CONTACT DETAILS

Unit 38 18 Stirling Highway NEDLANDS WA 6009

T +61 8 6118 1672 E info@catalinaresources.com.au

Air core re-splits reveal assays exceeding 1% TREO at the Dundas Project.

Catalina Resources ("Catalina" or "the Company") is pleased to provide the re-split assays of the composite 4m samples from the maiden air core drilling program at Dundas.

Highlights

- Two shallow air core holes intersected TREOs grades exceeding 1%.
- Hole 22DAC095 intersected 3m @ 0.92% TREO, including 1m @ 1.78% TREOs. Adjacent holes (100m apart) are also very anomalous.
- Hole 22DAC066 intersected 2m @ 1.02% TREOs. This hole also contained 2m @ 0.18% TREO in the bedrock at the EOH.
- Very high Nd₂O₃ assays received with up 0.35% intersected in 22DAC095 and 0.23% in hole 22DAC066.
- Latest assays confirm a valuable Heavy Rare Earth Elements ratio of 19% HREO/TREO and critical magnet metals NdPr + DyTb ratio of 24% of total REE's.
- Mineralisation open in all directions.
- Re-split assays are noticeably higher than the recently reported 4m composite assays. Re-splits were assayed via a digestion more complete than the mixed acid digestion used for the composite assays.
- The anomalous drilling geochemistry occurs within oxidised regolith and saprolite (clay) zones. It has developed by in-situ weathering of the bedrock.

A 105-hole air core drill program was completed at the Dundas Project in December 2022 for a total of 2909m with an average depth of 27.7m. Air core drilling is done to blade refusal (rock too hard to penetrate). The Dundas Project occurs in a green fields' region in the Albany Fraser Belt of WA. Its regional location is shown in Figure 1.

These outstanding high grade REE assays reinforce Catalina's belief that Dundas will emerge as a significant asset in a prospective and very underexplored location. Assays indicate significant REE intersections up to 10m thick are present.

A 6-20m blanket of transported colluvium and lake clays overlies and masks the bedrock geology. To look below this blanket air core drilling successfully intersected geochemical and lithological information of the bedrock to plan follow up RC drilling. Essentially the air core work has identified the geochemical halo to a potentially larger target at depth. Deeper RC drilling will be planned to drill underneath and along strike of these air core anomalies.

Figure 1. Summary of the highlights of resplit assays from air core drilling. Also illustrated are locations of drill traverse (A-A') and soil sampling traverse (B-B') discussed in text. Underlying image is the regional aeromagnetic image.

Significant REE intersections include:

- o 6m @ 0.6% TREO from 16 22m in hole 22DAC066, including.
 - 2m @ 1.02% TREO from 16-18m, includes 0.23 $Nd_2O_3,\,0.42\%$ $Ce_2O_3,\,223$ ppm $Dy_2O_3,\,0.12\%$ $La_2O_3.$
- o 3m @ 0.92% TREO from 22 25m in hole 22DAC095, including.
 - 1m @ 1.8% TREO, includes 0.35% Nd₂O₃, 0.75% Ce₂O₃, 284 ppm Dy₂O₃, 0.31% La₂O₃.
- $\circ~$ 4m @ 0.36% TREO from 22-26m in hole 22DAC097, includes 636 ppm Nd_2O_3, 1490 ppm Ce_2O_3, 540 ppm La_2O_3.

Significant lithium intersections include:

• 15m @ 113 ppm Li, 84 ppm Nd, 85 ppm La from 52 – 67m (EOH) in hole 22DAC073

The assays display an 'exceptional' critical magnet metal (NdPr+DyTb) ratio of 24% to total TREOs. These four HREEs are the core ingredients for the manufacturing of permanent magnets which are used in electric motors and generators. The growth in permanent magnets is attributed to increased use in the automotive

industry and electric vehicle drivetrains. The Lynas owned Rare Earth mine at Mt Weld in the Eastern Goldfields of WA is the sole producer of REEs in Australia.

Regolith and bedrock enrichments.

Significant REE enrichment in the regolith at Dundas is the result of weathering induced clay formation and REEs can be either enriched or depleted in different depth horizons of the regolith. Critically, the presence of anomalous REE mineralisation in bedrock in hole 22DAC066 below the regolith horizons suggests potential exists at Dundas **for higher grade, higher commercial value, hard fresh rock REE mineralisation**. The last 2m re-split samples assayed 2m @ 0.18% TREO at the end of hole, Figure 2. Petrography¹ indicates the rock is a quartz biotite schist, containing trace amounts of zircon and apatite, the probable sources of rare earth elements.

Figure 2 illustrates drilling cross-section A-A'. Its location is shown in Figure 1. Mineralisation is either restricted to the regolith in hole 22DAC063 or can extend into the fresh rock, as discussed above for hole 22DAC066.

Figure 2. Drilling cross-section, A-A'.

Re-split assays are markedly higher than the recently reported 4m composite assays. Re-splits were assayed via a high temperature fusion method more complete than the mixed acid digestion used for the composite assays. The re-split samples have been fused with sodium peroxide and subsequently the melt has been dissolved in dilute hydrochloric acid for analysis. This procedure is particularly efficient for determination of major element composition in the samples or for the determination of refractory mineral species, as are some REEs.

All REE re-split TREO assays are in Appendix 1.

Trial soil geochemistry.

A 1.5 km long orientation soil geochemistry traverse was completed over air core hole 22DAC095. The location of the traverse B-B' is illustrated in Figure 1.

Hole 22DAC095 intersected the highest grades (2m @ 1.3% TREO) and presents an ideal opportunity to trial low-level soil geochemistry when transported cover can mask any bedrock geochemistry. Air core hole 22DAC095 indicates the transported cover is 16m thick.

The CSIRO has commercialised a technique called ultra-fine soil sampling². UltraFine+[™] is now an established approach to surface exploration analysis using proven geochemical methods to identify

sensitive signals at surface. Ultrafine soil sampling allows for the analysis of most metals including REEs and lithium and has proven to be very useful for geologists and geochemists to help 'see' through shallow to moderate cover.

Figure 3 illustrates the results of the ultrafine orientation geochemical program. It suggests the transported cover at Dundas is amenable to ultrafine multi-element soil geochemistry. A multi-element geochemical anomaly is also present west of 434200E in Figure 3. Drilling was not undertaken in this area, and further investigation is warranted.

The multi-element assays received for the ultrafine sampling program are in appendix 2.

Figure 3. Summary of the test work for the ultrafine soil traverse (B-B') at Dundas. A significant multielement anomaly occurs at the position of hole 22DAC095 and suggests the regolith is amenable ultrafine soil geochemistry.

Blue-green mineral reported in January 2023

Within hole 22DAC016, from 30-35m (EOH), pegmatite containing a blue green mineral was intersected. The mineral was logged as aqua marine, a gem variety of the beryl mineral group. Air core drill chips from the intersection and their crystal form is illustrated in the previous announcement. Mineral analytical reports received from the air core drilling samples suggest that the blue green mineral reported was not aqua marine (beryl).

Catalina has completed technical studies of these samples and crystals to determine its composition and make an identification. Further scrutiny included X-ray diffraction analysis (XRD)³. XRD works by irradiating a material with incident X-rays and then measuring the intensities and scattering angles of the X-rays that leave the material.

Only crystalline material present in the sample will give peaks in the XRD scan. The crystalline material was identified as kyanite, an alumino-silicate present in high grade metamorphic terrains. It has been recorded in thermal aureoles of granitic bodies but does not imply any hydrothermal alteration assemblage is present.

Next Steps.

Initial shallow aircore drilling has identified robust high-grade clay hosted REE mineralization at Dundas. Essentially the air core work has identified the geochemical halo to a potentially larger target at depth or along strike.

Therefore, Catalina's Project strategy is to focus on extending and enhancing existing intersections of REE mineralisation. The company will also search for new higher grade and wider widths of REE, lithium and gold mineralisation within the tenements at Dundas.

Ultrafine multi-element soil geochemistry is an economical and proven method of generating drill targets through transported cover sequences. It is suited to identifying multi-element target areas in a larger regional soil sampling program. Deeper RC drilling will then drill test ultrafine geochemical anomalies.

Tenement Conditions.

As the project is in the Dundas National Park, additional tenement conditions over and above that for normal exploration licences are in force. These tenement conditions include prior to any environmental disturbance, the licensee preparing a detailed CMP (Conservation Management Plan) for each phase of proposed exploration for approval. The Minister for Environment and the Conservation and Parks Commission has formal requirements under Section 24 of the Mining Act 1978 (Mining Act) to provide formal recommendations on proposed activities in Dundas Nature Reserve prior to the Minister for Mines and Petroleum providing his consent. DBCA reviews and presents the information prepared by and on behalf of the applicant (including copies of the proposal document(s)) to the Minister for Environment and the Conservation and Parks Commission in the form of a Conservation Management Plan (CMP).

A new CMP has been developed and lodged with the DBCA in November 2022 for the next phase of exploration including deeper drilling. This CMP was updated and lodged in February 2023 following a meeting with DBCA and feedback received on the November draft version. The Company awaits DBCA's review of the CMP. Catalina understands that current processing times are elongated as DBCA is experiencing elevated work levels.

Catalina expects to begin deeper drilling, via RC methods, in a few months once the above processes are completed and approved and subject to weather conditions as Catalina has made commitments that exploration activities will not be conducted under high fire risk conditions or when local fire bans have been declared. Catalina will access the reserve only during dry soil conditions as accessing of Dundas Nature Reserve during the wet season may risk the rutting and erosion of tracks.

References

This announcement contains information extracted from ASX market announcements reported in accordance with the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" ("2012 JORC Code"). Further details (including 2012 JORC Code reporting tables where applicable) of exploration results referred to in this announcement can be found in the following announcements lodged on the ASX or on the company's website at: www.catalinaresources.com.au.

19/12/2022. Initial Drilling Program Complete at Dundas.
16/01/2023. Exploration Update - Dundas Project.
27/02/2023. REE and lithium discovered at Dundas.
22/03/2023. Exploration Update- Dundas Project.

Competent Person Statement

The review of historical exploration activities and results contained in this report is based on information compiled by Michael Busbridge, a Member of the Australian Institute of Geoscientists, and a Member of the Society of Economic Geologists. He is a Director of Catalina Resources Ltd. He has sufficient experience which is relevant to the style of mineralisation and types of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code).

Michael Busbridge has consented to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information in the original reports, and that the form and context in which the Competent Person's findings are presented have not been materially modified from the original reports.

The release of this document to the market has been authorised by the Board of Catalina Resources Ltd

ABOUT DUNDAS PROJECT

The Dundas Project area is situated within the inferred SE extensions of the mineralised Norseman – Wiluna Belt of the Archaean Yilgarn Craton and comprises a tectonostratigraphic assemblage of mafic, ultramafic and sedimentary dominated units. A major northwest trending fault system transects the tenements and may represent the prospective Boulder-Lefroy Fault Zone (BLFZ) and the Zuleika Shear Systems (ZS), illustrated in Figure 4. These shears and faults are highly prospective for gold (Swager et al., 1995). The tenements are also prospective for lithium mineralisation being only 25 kms to the southwest of Liontown's Buldania Lithium Project, also along the Zuleika Shear Zone, Figure 4. Field work and historical reporting has confirmed the presence of pegmatites within the tenements.

ABOUT CATALINA RESOURCES LTD

Catalina Resources Ltd is an Australian diversified mineral exploration and mine development company whose vision is to create shareholder value through the successful exploration of prospective gold, base metal, lithium, REEs and iron ore projects and the development of these projects into production. The company's portfolio of tenements are located in highly prospective terrains in NSW (Laughlin Fold Belt) and WA (Eastern Goldfields and Albany Fraser Belt).

Figure 4. Regional location of Catalina's tenements in the Albany Fraser Belt. Also illustrated are the projects and highlights of respected neighbouring companies including Metal Hawk and Dundas Minerals.

ASX RELEASE.

APPENDIX 1: AIR CORE RESPLITS ASSAYS.

Hole_Id	From (m)	To (m)	Ce₂O₃ ppm	Dy₂O₃ ppm	Er₂O₃ ppm	Eu₂O₃ ppm	Gd₂O ₃ ppm	Ho₂O₃ ppm	La₂o₃ ppm	Li ppm	Lu₂O₃ ppm	Nd₂O₃ ppm	Pr₅O₁ı ppm	Sm₂O₃ ppm	Tb₂O₃ ppm	Tm₂O₃ ppm	Y₂O₃ ppm	Yb₂O₃ ppm	TREO ppm	TREO %	HREE ppm	HREE/ TREO	NdPr+ DyTb	NdPr+/ TREO %
22DAC066	12	13	412.2	4.0	2.3	1.2	4.6	0.7	13.5	46	0.2	18.1	4.3	4.6	0.7	0.5	22.9	2.3	492.0	0.05	38.1	0.08	27.1	0.06
22DAC066	13	14	224.8	11.5	7.4	2.5	11.5	2.5	27.6	48	0.9	38.5	9.2	8.7	1.8	1.1	88.9	6.3	443.3	0.04	132.0	0.30	61.0	0.14
22DAC066	14	15	612.4	27.0	22.3	5.3	27.7	6.9	66.3	150	2.7	96.8	21.7	22.0	4.1	3.0	283.2	17.1	1218.5	0.12	394.0	0.32	149.6	0.12
22DAC066	15	16	210.8	18.9	13.7	5.1	20.8	4.4	53.4	44	2.0	89.2	20.5	20.9	3.0	2.1	125.7	14.8	605.3	0.06	205.4	0.34	131.7	0.22
22DAC066	16	17	4754.3	266.3	118.9	113.5	417.4	46.5	1431.1	27	13.2	2308.7	533.9	465.2	51.1	14.8	1079.5	94.5	11708.9	1.17	2102.3	0.18	3160.1	0.27
22DAC066	17	18	3606.7	180.2	81.2	84.1	292.9	30.9	975.9	32	8.6	1749.0	393.8	346.8	35.5	10.0	767.1	61.5	8624.3	0.86	1467.9	0.17	2358.5	0.27
22DAC066	18	19	2646.5	121.7	54.9	58.6	200.6	20.9	717.9	26	5.5	1247.6	288.7	247.1	23.9	6.6	516.9	41.0	6198.3	0.62	991.9	0.16	1682.0	0.27
22DAC066	19	20	935.6	43.1	19.4	20.1	69.2	7.6	259.2	29	2.0	433.8	100.0	84.7	8.5	2.3	186.7	14.8	2187.0	0.22	353.6	0.16	585.3	0.27
22DAC066	20	21	556.2	25.3	10.9	12.0	43.8	4.6	164.2	29	1.1	260.0	60.6	51.6	5.1	1.4	109.2	8.5	1314.6	0.13	209.8	0.16	351.0	0.27
22DAC066	21	22	1510.6	83.8	33.1	36.1	136.1	13.8	516.1	29	3.2	771.9	177.6	147.3	16.1	3.9	303.5	24.5	3777.6	0.38	618.0	0.16	1049.4	0.28
22DAC066	22	23	406.3	21.8	9.1	10.9	36.9	3.9	170.1	35	0.9	223.9	56.5	42.9	4.4	1.1	87.6	7.4	1083.8	0.11	173.2	0.16	306.6	0.28
22DAC066	23	24	541.0	31.6	12.0	20.4	57.7	5.0	332.0	28	0.9	518.9	130.5	89.3	6.7	1.4	109.2	9.1	1865.5	0.19	233.6	0.13	687.6	0.37
22DAC066	24	25	439.1	24.1	9.7	13.4	43.8	4.1	200.6	31	0.9	312.5	76.1	56.8	4.8	1.1	90.2	7.4	1284.8	0.13	186.2	0.14	417.5	0.32
22DAC066	25	26	524.6	29.8	12.0	17.1	55.3	4.8	255.7	32	1.1	402.3	98.1	70.8	6.0	1.4	109.2	9.1	1597.4	0.16	228.8	0.14	536.2	0.34
22DAC066	26	27	215.5	12.1	4.6	6.0	20.8	2.1	96.2	28	0.5	145.8	35.0	27.3	2.3	0.5	45.7	3.4	617.5	0.06	91.8	0.15	195.1	0.32
22DAC066	27	28	173.3	9.2	4.0	4.9	16.1	1.6	78.0	28	0.2	114.9	27.3	20.9	1.8	0.5	36.8	3.4	492.9	0.05	73.7	0.15	153.2	0.31
22DAC066	28	29	104.8	3.4	1.7	1.9	4.6	0.7	38.7	12	-0.2	42.0	11.6	7.5	0.7	-0.2	16.5	1.1	234.8	0.02	28.3	0.12	57.7	0.25
22DAC066	29	30	202.6	4.6	2.3	3.0	9.2	0.9	71.6	8	-0.2	77.5	21.0	11.6	0.9	0.2	21.6	1.7	428.5	0.04	41.2	0.10	104.1	0.24
22DAC066	30	31	906.4	45.9	18.9	22.5	78.4	7.6	323.7	20	1.8	479.2	113.1	93.4	9.4	2.3	168.9	14.2	2285.7	0.23	347.4	0.15	647.7	0.28
22DAC066	31	32	548.0	27.0	10.9	13.7	46.1	4.6	202.9	19	0.9	302.0	72.5	58.0	5.5	1.4	101.6	8.5	1403.6	0.14	206.5	0.15	407.0	0.29
22DAC063	8	9	630.0	19.5	10.9	10.4	34.6	3.7	306.2	30	1.4	304.3	81.9	49.3	3.9	1.4	114.3	9.1	1580.8	0.16	198.7	0.13	409.7	0.26
22DAC063	9	10	110.7	4.6	2.3	1.9	6.9	0.7	55.1	30	-0.2	50.1	13.8	8.7	0.7	0.2	21.6	2.3	279.3	0.03	39.0	0.14	69.2	0.25
22DAC063	10	11	19.9	2.3	1.1	0.7	-2.3	0.5	11.1	11	-0.2	11.7	3.1	2.3	0.2	-0.2	10.2	1.1	61.5	0.01	12.7	0.21	17.3	0.28
22DAC063	11	12	575.0	8.0	2.9	5.1	16.1	1.1	319.1	14	-0.2	242.5	78.0	30.2	1.8	0.5	31.8	2.3	1314.1	0.13	64.3	0.05	330.4	0.25
22DAC061B	8	9	952.0	43.6	18.9	21.5	76.1	7.6	507.9	34	1.8	524.7	135.3	92.2	9.0	2.3	233.7	13.1	2639.7	0.26	406.0	0.15	712.6	0.27
22DAC061B	9	10	92.5	12.6	8.0	2.8	13.8	2.8	45.2	18	0.9	51.3	12.1	11.0	1.8	1.1	120.7	6.8	383.4	0.04	168.6	0.44	77.9	0.20
22DAC061B	10	11	49.2	6.9	4.6	1.6	6.9	1.4	23.5	21	0.5	26.8	7.0	5.8	0.9	0.5	49.5	3.4	188.4	0.02	74.5	0.40	41.6	0.22
22DAC061B	11	12	139.3	8.6	5.1	3.0	9.2	1.6	71.0	37	0.7	68.8	18.1	12.2	1.4	0.7	52.1	5.1	396.9	0.04	84.5	0.21	96.9	0.24

Hole_Id	From (m)	To (m)	Ce₂O₃ ppm	Dy₂O₃ ppm	Er₂O₃ ppm	Eu₂O₃ ppm	Gd₂O ₃ ppm	Ho₂O₃ ppm	La₂o₃ ppm	Li ppm	Lu₂O₃ ppm	Nd₂O₃ ppm	Pr₅O ₁₁	Sm₂O₃ ppm	Tb₂O₃ ppm	Tm₂O₃ ppm	Y₂O₃ ppm	Yb₂O₃ ppm	TREO	TREO %	HREE	HREE/ TREO	NdPr+	NdPr+/ TREO %
	(,	(,	450.0	PP	P P	PP	3 66	6 F	PP····	PP		PP	45.0	6 A	· -	PP	PP		PP	0.00			DyTb	0.10
22DAC094	20	21	152.2	3.4	1.7	1.6	4.6	0.5	90.3	11	-0.2	45.5	15.0	6.4	0.7	-0.2	15.2	1.7	338.4	0.03	27.4	0.08	64.6	0.19
22DAC094	21	22	234.2	4.0	1.7	2.8	6.9	0.7	110.8	16	-0.2	88.0	25.6	12.2	0.9	-0.2	16.5	1.7	505.7	0.05	32.0	0.06	118.6	0.23
22DAC094	22	23	488.3	8.0	2.3	6.3	16.1	1.1	218.2	10	-0.2	183.1	54.1	30.2	1.8	0.2	22.9	2.3	1034.7	0.10	54.6	0.05	247.1	0.24
22DAC094	23	24	529.3	5.2	1.7	4.2	11.5	0.7	233.4	10	-0.2	176.1	57.0	22.0	1.2	0.2	16.5	1.7	1060.5	0.11	38.5	0.04	239.4	0.23
22DAC094	24	25	297.4	5.7	1.7	4.6	11.5	0.9	109.7	15	-0.2	158.6	41.1	24.4	1.4	0.2	17.8	1.7	676.5	0.07	40.8	0.06	206.8	0.31
22DAC094	25	26	109.5	2.9	1.1	2.3	6.9	0.5	51.6	14	-0.2	63.5	15.2	10.4	0.7	-0.2	12.7	1.1	278.1	0.03	25.5	0.09	82.3	0.30
22DAC095	20	21	62.1	4.6	2.9	1.4	4.6	0.9	31.1	6	0.2	30.9	8.0	5.8	0.9	0.5	24.1	2.8	180.8	0.02	41.6	0.23	44.4	0.25
22DAC095	21	22	473.1	21.2	9.7	9.0	32.3	3.9	213.5	10	0.9	214.5	57.7	38.3	4.1	1.1	95.3	7.4	1182.2	0.12	176.0	0.15	297.7	0.25
22DAC095	22	23	7494.4	284.7	100.6	144.8	488.9	43.3	3108.5	13	7.0	3498.0	902.4	627.6	58.0	11.0	960.1	62.6	17791.8	1.78	2016.3	0.11	4743.1	0.27
22DAC095	23	24	3536.4	134.3	43.4	71.3	235.2	19.5	1431.1	13	3.0	1667.4	427.6	307.4	28.1	4.8	429.3	27.9	8366.7	0.84	925.4	0.11	2257.4	0.27
22DAC095	24	25	567.9	23.0	8.6	11.6	39.2	3.7	241.6	49	0.7	271.7	70.8	51.6	4.8	0.9	86.4	5.7	1388.1	0.14	172.9	0.12	370.3	0.27
22DAC095	25	26	114.2	5.7	2.3	2.5	9.2	0.9	54.0	34	-0.2	54.2	14.3	9.9	1.2	0.2	27.9	1.7	298.0	0.03	49.0	0.16	75.4	0.25
22DAC095	26	27	76.7	4.6	1.7	2.1	6.9	0.7	41.6	39	-0.2	37.3	10.4	7.0	0.9	0.2	22.9	1.7	214.5	0.02	39.4	0.18	53.2	0.25
22DAC095	27	28	146.4	6.9	2.9	3.7	11.5	1.1	79.2	24	-0.2	79.3	21.5	15.7	1.4	0.2	33.0	2.3	404.8	0.04	59.1	0.15	109.1	0.27
22DAC095	28	29	167.5	6.3	2.3	3.9	11.5	0.9	163.0	22	-0.2	109.6	33.8	18.0	1.2	0.2	30.5	1.7	550.2	0.06	54.4	0.10	150.9	0.27
22DAC095	29	30	34.5	1.7	0.6	1.2	-2.3	-0.2	19.4	8	-0.2	18.1	4.6	3.5	0.2	-0.2	10.2	0.6	91.5	0.01	10.3	0.11	24.6	0.27
22DAC095	30	31	22.2	1.1	0.6	0.7	-2.3	-0.2	12.9	6	-0.2	11.1	2.9	2.3	0.2	-0.2	6.4	0.6	58.0	0.01	5.9	0.10	15.4	0.26
22DAC095	31	32	63.8	2.3	1.1	1.2	4.6	0.5	32.3	3	-0.2	29.2	8.2	5.8	0.5	-0.2	14.0	1.1	164.0	0.02	23.6	0.14	40.1	0.24
22DAC095	32	33	41.6	2.3	0.6	1.2	-2.3	-0.2	19.9	5	-0.2	20.4	5.6	4.1	0.5	-0.2	10.2	1.1	104.3	0.01	11.6	0.11	28.7	0.28
22DAC095	33	34	37.5	1.7	1.1	1.2	-2.3	-0.2	18.2	8	-0.2	17.5	4.8	4.1	0.5	-0.2	10.2	1.1	94.8	0.01	11.6	0.12	24.5	0.26
22DAC095	34	35	327.9	5.7	2.3	3.7	9.2	0.9	195.9	12	-0.2	96.8	31.2	16.2	1.2	0.2	22.9	1.7	715.5	0.07	43.9	0.06	134.8	0.19
22DAC095	35	36	830.2	27.0	10.9	17.6	48.4	4.1	231.1	5	1.1	448.9	114.5	82.4	5.8	1.6	91.4	10.8	1925.8	0.19	201.1	0.10	596.2	0.31
22DAC095	36	37	195.6	15.5	6.3	5.6	25.4	2.8	100.3	23	0.7	104.4	24.6	21.5	3.2	0.9	69.9	5.7	582.1	0.06	130.3	0.22	147.7	0.25
22DAC096	20	21	235.4	9.2	4.6	3.9	13.8	1.6	105.6	19	0.2	108.4	28.5	18.6	1.8	0.5	45.7	3.4	581.2	0.06	80.9	0.14	148.0	0.25
22DAC096	21	22	1096.1	68.3	36.0	23.4	92.2	12.4	516.1	20	3.6	515.4	130.5	91.6	12.2	4.3	416.6	26.2	3044.9	0.30	671.9	0.22	726.3	0.24
22DAC096	22	23	185.0	28.7	21.1	5.3	30.0	7.1	87.4	8	2.5	90.9	21.7	18.6	4.6	2.7	336.6	15.9	858.3	0.09	449.3	0.52	146.0	0.17
22DAC096	23	24	304.5	39.6	27.4	9.7	43.8	8.7	134.9	13	3.4	148.1	36.7	31.9	6.4	3.4	354.3	22.8	1175.7	0.12	510.0	0.43	230.9	0.20
22DAC096	24	25	1149.9	50.5	25.1	24.5	80.7	9.4	312.0	25	2.5	528.2	125.6	102.1	9.9	3.2	317.5	18.8	2760.1	0.28	517.7	0.19	714.2	0.26
22DAC096	25	26	421.6	14.4	6.3	7.9	25.4	2.5	111.4	26	0.5	176.1	42.8	34.2	2.8	0.7	78.7	5.1	930.2	0.09	136.3	0.15	235.9	0.25
22DAC096	26	27	87.2	5.2	2.9	2.1	6.9	0.9	41.1	38	-0.2	42.6	11.1	8.7	0.9	0.5	30.5	2.3	242.5	0.02	49.8	0.21	59.8	0.25
22DAC096	27	28	76.7	5.7	3.4	3.0	9.2	1.1	84.5	29	0.2	65.9	18.6	10.4	1.2	0.5	36.8	2.8	320.1	0.03	61.1	0.19	91.4	0.29
22DAC097	20	21	18.7	4.6	3.4	0.9	4.6	0.9	10.0	17	0.5	10.5	2.9	2.9	0.7	0.5	30.5	3.4	95.0	0.01	49.0	0.52	18.7	0.20
22DAC097	21	22	43.3	4.6	2.9	1.2	4.6	0.9	22.3	9	0.5	19.2	5.6	4.1	0.7	0.5	31.8	3.4	145.4	0.01	49.7	0.34	30.1	0.21
22DAC097	22	23	2716.7	102.7	49.7	47.2	161.4	18.8	1089.7	23	4.5	1201.0	316.5	212.3	19.8	5.9	594.4	34.2	6574.9	0.66	991.5	0.15	1640.0	0.25
22DAC097	23	24	332.6	32.7	22.9	7.6	36.9	7.3	149.0	17	3.2	155.1	39.6	29.6	5.1	3.2	316.2	19.4	1160.3	0.12	446.8	0.39	232.5	0.20
22DAC097	24	25	399.3	36.7	22.3	10.7	46.1	7.6	171.3	24	2.5	191.2	45.7	40.6	6.0	2.7	276.9	17.7	1277.2	0.13	418.5	0.33	279.6	0.22
22DAC097	25	26	2505.9	84.4	38.9	43.8	140.7	14.9	744.9	21	3.9	998.1	252.5	189.1	17.0	4.8	462.3	27.9	5528.9	0.55	794.7	0.14	1352.0	0.24
22DAC097	26	27	435.6	18.9	9.1	8.6	30.0	3.7	149.0	25	1.1	183.1	46.1	36.0	3.5	1.4	119.4	8.0	1053.4	0.11	195.0	0.19	251.6	0.24
22DAC097	27	28	292.8	13.2	6.3	5.8	20.8	2.3	96.8	20	0.7	123.6	30.7	23.8	2.5	0.9	76.2	5.7	701.9	0.07	128.6	0.18	170.0	0.24

Hole_Id	From (m)	To (m)	Ce ₂ O ₃	Dy₂O₃	Er₂O₃	Eu₂O₃	Gd₂O ₂ ppm	Ho₂O₃ ppm	La₂o₃ ppm	Li	Lu₂O₃ nnm	Nd₂O₃	Pr ₆ O ₁₁	Sm₂O₃ ppm	Tb₂O₃	Tm₂O₃	Y₂O₃ ppm	Yb₂O₃ ppm	TREO	TREO %	HREE	HREE/	NdPr+
222.4.0000	(,	(,	PP	PP	PP	PP	3 66	PP	PP	PP	PP	PP	PP	PP	рр	PP	PP	6 T	400.0			0.04	DyTb
22DAC090	20	21	28.7	2.9	2.3	0.9	-2.3	0.5	34.0	16	-0.2	21.6	6.3	3.5	0.5	0.2	20.3	1.7	120.8	0.01	25.8	0.21	31.2
22DAC090	21	22	172.1	8.6	3.4	5.3	16.1	1.4	118.5	17	0.2	139.9	37.9	23.8	1.6	0.5	40.6	2.8	572.9	0.06	75.3	0.13	188.1
22DAC090	22	23	216.6	8.6	3.4	5.3	16.1	1.4	123.2	30	-0.2	112.5	29.5	20.3	1.6	0.5	33.0	2.8	5/4./	0.06	67.3	0.12	152.2
22DAC090	23	24	898.2	20.1	6.3	15.7	41.5	2.8	290.9	30	0.2	2/1./	61.1	57.4	4.6	0.7	55.9	3.4	1730.5	0.17	135.4	0.08	357.5
22DAC090	24	25	180.3	2.9	1.7	1.4	4.6	0.5	144.3	15	-0.2	37.3	13.8	5.2	0.5	-0.2	15.2	1.1	408.3	0.04	26.0	0.06	54.4
22DAC090	25	26	354.8	4.0	1.7	2.1	4.6	0.7	307.3	11	-0.2	58.3	24.4	7.0	0.7	-0.2	19.1	1.1	785.3	0.08	31.5	0.04	87.4
22DAC092	28	29	291.6	5.2	2.3	4.4	11.5	0.9	219.4	3	-0.2	163.2	48.6	21.5	1.2	0.2	27.9	1.7	799.3	0.08	50.7	0.06	218.1
22DAC092	29	30	264.6	4.6	1.7	3.7	11.5	0.7	198.2	5	-0.2	134.1	40.1	19.7	1.2	0.2	25.4	1.7	/07.3	0.07	46.8	0.07	179.9
22DAC092	30	31	402.8	5.7	2.3	3.9	11.5	0.9	259.2	1	-0.2	146.9	46.9	20.9	1.4	0.5	31.8	2.3	936.8	0.09	56.1	0.06	200.9
22DAC092	31	32	382.9	4.6	1.7	3.0	9.2	0.7	232.3	4	-0.2	117.8	37.7	15.1	0.9	0.2	21.6	1.7	829.2	0.08	40.4	0.05	161.0
22DAC093	43	44	201.4	9.2	3.4	5.1	16.1	1.4	78.6	3	0.2	109.6	26.1	21.5	1.8	0.5	41.9	2.8	519.7	0.05	77.4	0.15	146.7
22DAC093	44	45	551.5	20.7	6.9	14.1	39.2	3.0	200.6	10	0.5	300.8	74.2	59.7	4.6	0.9	62.2	5.1	1344.0	0.13	143.0	0.11	400.3
22DAC093	45	46	422.7	19.5	6.9	12.0	36.9	3.0	145.5	11	0.5	258.9	62.1	52.8	4.4	0.9	64.8	5.1	1095.8	0.11	141.9	0.13	344.8
22DAC093	46	47	125.3	8.0	4.6	3.7	13.8	1.6	51.0	12	0.5	75.8	17.4	15.1	1.6	0.7	47.0	3.4	369.5	0.04	81.2	0.22	102.8
22DAC073	52	53	227.2	12.1	7.4	2.5	13.8	2.8	84.5	108	0.9	84.0	23.2	16.2	2.3	0.9	78.7	6.8	563.3	0.06	125.8	0.22	121.5
22DAC073	53	54	234.2	10.3	5.1	2.1	11.5	1.8	85.0	128	0.5	78.7	22.2	14.5	1.6	0.7	50.8	4.6	523.7	0.05	86.9	0.17	112.9
22DAC073	54	55	226.0	10.3	5.1	2.3	11.5	1.8	86.2	137	0.5	79.9	22.5	14.5	1.8	0.7	49.5	5.1	517.9	0.05	86.5	0.17	114.5
22DAC073	55	56	228.3	13.8	8.0	2.3	16.1	2.8	94.4	125	0.9	89.8	25.1	17.4	2.3	1.1	81.3	6.8	590.5	0.06	133.1	0.23	131.0
22DAC073	56	57	278.7	14.9	9.1	2.5	16.1	3.2	110.3	99	1.1	106.1	29.5	20.9	2.5	1.4	96.5	9.1	702.1	0.07	154.1	0.22	153.0
22DAC073	57	58	206.1	12.1	5.7	2.8	13.8	2.1	84.5	100	0.5	85.1	22.7	17.4	2.1	0.7	55.9	5.1	516.4	0.05	97.9	0.19	122.0
22DAC073	58	59	208.4	13.8	8.6	2.5	13.8	3.0	82.7	107	1.1	78.7	22.0	15.1	2.3	1.1	91.4	8.0	552.6	0.06	143.2	0.26	116.8
22DAC073	59	60	262.3	10.9	5.1	2.5	11.5	2.1	103.8	117	0.5	95.0	27.5	16.2	1.8	0.7	52.1	4.6	596.7	0.06	89.2	0.15	135.3
22DAC073	60	61	220.1	14.4	8.6	2.8	16.1	3.0	90.9	113	0.9	87.5	23.9	17.4	2.5	1.1	82.6	7.4	579.2	0.06	136.6	0.24	128.3
22DAC073	61	62	240.1	8.6	4.6	2.3	11.5	1.6	94.4	104	0.5	86.9	24.9	15.1	1.6	0.5	40.6	4.0	537.1	0.05	73.5	0.14	122.0
22DAC073	62	63	243.6	12.6	6.3	3.0	16.1	2.1	94.4	101	0.7	96.8	26.1	19.1	2.1	0.9	57.2	5.7	586.6	0.06	103.6	0.18	137.6
22DAC073	63	64	193.2	11.5	8.0	2.3	11.5	2.5	78.6	86	0.9	74.0	20.5	13.9	1.8	0.9	76.2	6.3	502.3	0.05	119.7	0.24	107.9
22DAC073	64	65	203.8	10.9	5.7	2.1	11.5	2.1	80.4	94	0.7	74.6	20.8	13.9	1.8	0.9	58.4	5.7	493.3	0.05	97.8	0.20	108.1
22DAC073	65	66	182.7	10.9	6.3	2.1	11.5	2.1	71.6	113	0.9	63.5	18.1	12.8	1.6	0.9	67.3	5.7	458.0	0.05	107.2	0.23	94.2
22DAC073	66	67	180.3	9.8	5.1	2.3	11.5	1.8	78.0	152	0.5	65.9	18.6	12.2	1.6	0.7	55.9	4.6	448.8	0.04	91.5	0.20	95.9

Hole_Id	From (m)	To (m)	Ce₂O₃ ppm	Dy₂O₃ ppm	Er₂O₃ ppm	Eu₂O₃ ppm	Gd₂O ₃ ppm	Ho₂O₃ ppm	La₂o₃ ppm	Li ppm	Lu₂O₃ ppm	Nd₂O₃ ppm	Pr₀O₁₁ ppm	Sm₂O₃ ppm	Tb₂O₃ ppm	Tm₂O₃ ppm	Y₂O₃ ppm	Yb₂O₃ ppm	TREO ppm	TREO %	HREE ppm	HREE/ TREO	NdPr+ DyTb	NdPr+/ TREO %
22DAC073	67	68	217.8	11.5	6.3	2.5	13.8	2.1	84.5	119	0.5	80.5	22.7	15.7	1.8	0.9	61.0	5.7	527.2	0.05	103.5	0.20	116.5	0.22
22DAC073	68	69	247.1	13.2	7.4	2.5	13.8	2.5	93.3	107	0.7	87.5	24.2	15.7	2.1	0.9	74.9	6.3	592.0	0.06	121.9	0.21	126.9	0.21
22DAC073	69	70	227.2	12.6	6.9	2.5	13.8	2.3	88.0	108	0.7	81.6	23.4	15.7	2.1	0.9	69.9	5.1	552.7	0.06	114.3	0.21	119.8	0.22
22DAC073	70	71	209.6	13.2	8.0	2.3	13.8	2.5	86.8	107	0.9	80.5	22.2	16.2	2.1	1.1	83.8	7.4	550.6	0.06	132.9	0.24	118.0	0.21
22DAC073	71	72	230.7	10.9	5.1	2.5	13.8	1.8	91.5	93	0.5	89.8	24.9	16.2	1.8	0.7	54.6	4.6	549.5	0.05	93.9	0.17	127.4	0.23
22DAC073	72	73	189.7	11.5	6.3	2.3	11.5	2.3	79.8	117	0.7	71.7	19.8	13.9	1.6	0.9	66.0	5.7	483.8	0.05	106.5	0.22	104.6	0.22
22DAC073	73	74	206.1	13.8	8.6	2.8	16.1	3.0	90.9	126	0.9	86.3	23.4	16.8	2.3	1.1	94.0	7.4	573.5	0.06	147.2	0.26	125.8	0.22
22DAC073	74	75	220.1	10.3	5.1	2.5	13.8	1.8	96.2	104	0.5	90.9	25.4	16.2	1.8	0.7	49.5	4.6	539.7	0.05	88.2	0.16	128.5	0.24
22DAC073	75	76	189.7	13.2	9.1	2.3	13.8	2.8	79.8	117	1.1	73.5	20.5	13.9	2.1	1.4	104.1	9.1	536.5	0.05	156.8	0.29	109.3	0.20
22DAC073	76	77	199.1	9.2	5.1	2.1	11.5	1.6	88.0	120	0.7	74.6	21.7	13.9	1.6	0.7	50.8	4.6	485.2	0.05	85.8	0.18	107.2	0.22
22DAC073	77	78	209.6	12.1	6.9	2.3	13.8	2.3	84.5	107	0.7	81.6	23.0	15.7	2.1	0.9	69.9	5.7	530.9	0.05	114.3	0.22	118.7	0.22
22DAC073	78	79	223.7	9.8	4.6	2.3	11.5	1.6	93.8	85	0.5	79.9	23.0	15.1	1.6	0.7	49.5	4.6	522.0	0.05	84.3	0.16	114.2	0.22
22DAC073	79	80	182.7	8.0	4.0	2.1	11.5	1.6	83.9	81	0.2	68.8	20.1	12.2	1.4	0.5	40.6	3.4	441.0	0.04	71.3	0.16	98.3	0.22
22DAC071	72	73	213.1	12.1	7.4	2.1	11.5	2.5	97.9	81	0.9	77.5	23.0	15.1	1.8	0.9	78.7	7.4	552.1	0.06	123.3	0.22	114.4	0.21
22DAC071	73	74	175.7	10.9	5.1	2.1	11.5	2.1	76.2	76	0.7	71.7	20.3	13.9	1.8	0.7	57.2	4.6	454.5	0.05	94.6	0.21	104.8	0.23
22DAC071	74	75	207.3	12.6	6.9	2.3	13.8	2.3	84.5	89	0.7	81.6	23.2	15.7	2.1	0.9	63.5	5.7	523.0	0.05	108.5	0.21	119.5	0.23
22DAC071	75	76	209.6	13.2	6.9	2.3	13.8	2.5	88.0	97	0.9	85.1	24.2	16.8	2.1	0.9	68.6	7.4	542.3	0.05	116.3	0.21	124.6	0.23
22DAC071	76	77	207.3	13.8	7.4	2.3	16.1	2.8	85.0	92	0.9	85.1	23.2	16.2	2.3	1.1	78.7	6.8	549.2	0.05	130.0	0.24	124.4	0.23
22DAC071	77	78	241.2	12.6	6.9	2.3	13.8	2.3	97.9	93	0.9	95.6	27.1	18.6	2.3	0.9	62.2	6.3	591.0	0.06	108.2	0.18	137.6	0.23
22DAC071	78	79	279.9	17.2	9.7	2.8	20.8	3.4	111.4	98	1.1	111.9	31.2	22.6	3.0	1.4	95.3	8.5	720.2	0.07	160.4	0.22	163.3	0.23
22DAC071	79	80	279.9	14.4	6.9	2.5	16.1	2.5	112.0	110	0.7	106.7	30.4	20.9	2.3	0.9	67.3	6.3	669.8	0.07	117.3	0.18	153.8	0.23
22DAC071	80	81	229.5	12.6	6.3	2.3	13.8	2.3	94.4	94	0.7	93.3	25.9	19.1	2.1	0.9	63.5	6.3	573.0	0.06	108.5	0.19	133.8	0.23
22DAC071	81	82	229.5	13.2	6.9	2.3	16.1	2.5	95.0	85	0.7	96.8	26.1	18.6	2.3	0.9	64.8	6.3	581.9	0.06	113.7	0.20	138.4	0.24
22DAC071	82	83	227.2	13.8	7.4	2.5	16.1	2.5	95.0	86	0.9	94.4	26.6	18.6	2.3	0.9	73.7	6.8	588.8	0.06	124.5	0.21	137.1	0.23
22DAC071	83	84	212.0	12.1	6.9	2.1	13.8	2.3	89.1	86	0.7	85.1	23.9	16.2	2.3	1.1	67.3	6.3	541.2	0.05	112.7	0.21	123.4	0.23
22DAC028	28	29	890.0	12.1	3.4	10.7	27.7	1.6	253.4	4	-0.2	321.8	88.9	50.5	2.8	0.5	40.6	2.3	1705.8	0.17	90.7	0.05	425.5	0.25
22DAC028	29	30	687.4	9.2	2.9	7.6	18.4	1.1	176.0	2	-0.2	237.9	67.4	38.9	2.1	0.2	27.9	1.7	1278.5	0.13	63.4	0.05	316.5	0.25
22DAC028	30	31	243.6	4.6	1.7	2.3	6.9	0.9	109.7	3	-0.2	67.0	21.0	9.9	0.9	0.2	17.8	1.7	488.0	0.05	34.6	0.07	93.6	0.19
22DAC027	28	29	365.4	12.1	4.6	6.5	20.8	1.8	133.7	13	-0.2	146.9	38.2	26.7	2.5	0.5	43.2	2.8	805.3	0.08	88.0	0.11	199.7	0.25
22DAC026	34	35	106.6	5.7	2.9	2.3	9.2	0.9	40.5	16	0.2	56.6	14.3	10.4	0.9	0.5	30.5	2.8	284.3	0.03	53.7	0.19	77.5	0.27
22DAC016	31	33	103.0	4.6	1.7	2.5	6.9	0.7	42.8	9	-0.2	68.2	15.5	12.2	0.9	-0.2	17.8	1.7	278.1	0.03	33.9	0.12	89.2	0.32

CATALINA RESOURCES

ASX RELEASE.

APPENDIX 2.

ASSAYS FROM THE ORIENTATION ULTRAFINE MULTI-ELEMENT SOIL TRAVERSE (B-B').

Element	MGA_Eas	MGA_No	Ag	As	Ве	Bi	Bi*100	Ca	Ce	Co	Cr	Cs	Cu	Cu*10	Dy	Dy*10	Eu	Ga	Gd	Ge	Но	La	Li	Lu
Units			ppm	ppm	ppm	ppm		ppm	ppm	ppm	ppm	ppm	ppm		ppm		ppm							
198431	433750	6418400	0.034	8.4	2.38	0.198	19.8	149000	119	17.4	169	4.66	32.7	327	6.69	66.9	2.77	22.3	9.92	0.24	1.37	52.2	90.6	0.42
198432	433900	6418400	0.087	11.4	11.6	0.266	26.6	52700	303	84.9	176	3.89	55.7	557	16.1	161	5.58	25.9	21.6	0.43	3.5	99.3	134	1.22
198433	434000	6418400	0.034	6.3	5.1	0.281	28.1	4050	198	43.5	182	4.67	58.6	586	5.78	57.8	2.09	24.5	7.61	0.21	1.2	35.2	100	0.51
198434	434100	6418400	0.03	5.8	4.92	0.268	26.8	6770	225	34.3	203	5.04	66.4	664	6.55	65.5	2.37	28.6	8.77	0.25	1.37	37.2	109	0.58
198435	434200	6418400	0.038	6.6	3.92	0.362	36.2	743	118	31	205	5.93	41.2	412	2.97	29.7	1.14	24.7	4.07	0.16	0.58	23.9	121	0.23
198436	434300	6418400	0.065	7.6	2.42	0.371	37.1	323	59.8	29.5	142	2.55	28.4	284	1.88	18.8	0.72	14.5	2.68	0.1	0.37	21.2	54.2	0.14
198437	434400	6418400	0.049	7.9	2.53	0.39	39	589	71.4	29.1	163	3.06	38.4	384	2.39	23.9	0.93	16.1	3.35	0.12	0.46	22.3	61.9	0.18
198438	434500	6418400	0.055	7.3	3.8	0.325	32.5	1760	137	23.6	160	3.93	48.6	486	5.13	51.3	2.13	20.7	7.47	0.28	1.02	35.8	53.1	0.43
198439	434600	6418400	0.051	6.7	4.29	0.462	46.2	1290	147	29.6	157	3.71	40.7	407	3.89	38.9	1.5	19.5	5.44	0.2	0.78	27.7	44.4	0.35
198440	434700	6418400	0.07	6.1	3.44	0.377	37.7	983	111	33.1	166	3.62	38.5	385	3.39	33.9	1.25	19.2	4.59	0.18	0.68	23.9	49.2	0.28
198441	434800	6418400	0.099	7.2	2.97	0.424	42.4	785	69.9	34.9	193	4.75	36.4	364	2.35	23.5	0.89	21.6	3.33	0.15	0.46	20.5	65.5	0.18
198442	434900	6418400	0.065	6.6	2.15	0.374	37.4	1200	75.2	24.2	140	2.27	29.7	297	2.57	25.7	0.97	12.9	3.54	0.13	0.51	19.1	37.5	0.2
198443	435000	6418400	0.045	5.6	2.59	0.37	37	1240	63.1	27.8	179	4.14	43.2	432	2.19	21.9	0.8	18.2	2.92	0.1	0.43	16.8	65.5	0.18
198444	435110	6418400	0.095	6.5	2.15	0.363	36.3	845	61.1	27.6	164	3.09	38.6	386	2.33	23.3	0.87	17	3.15	0.11	0.46	17.6	55.4	0.17
198445	435150	6418400	0.086	6.4	2.31	0.357	35.7	791	59.4	26	156	3	36.9	369	2.25	22.5	0.83	16.4	3.11	0.12	0.44	17.7	52.2	0.17

Element	MGA_Eas	MGA_No	Мо	Mo*10) Nd	Ni	Pb	Pr	Pr*10	Rb	Sc	Se	Sm	Sr	Tb	Tb*10	0 Te	Th	Ti	Tİ	Tm	W	Y	Yb	Zn	Zr
Units			ppm		ppm	ppm	ppm	ppm		ppm	ppm	ppm	ppm	ppm	ppm		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
198431	433750	6418400	0.35	35	69.3	79.7	20	17.8	178	206	23.7	2.4	12.3	159	1.3	130	0.034	15.4	634	0.396	0.47	0.167	41.6	2.79	53.5	10.7
198432	433900	6418400	0.37	37	139	229	41	35.3	353	214	31.7	4.75	24.6	113	3.01	301	0.037	23.7	312	0.808	1.32	0.155	109	7.96	105	10
198433	434000	6418400	0.37	37	51.8	168	33.4	13.2	132	236	36.1	1.98	9.41	40.7	1.08	108	0.043	44	215	0.726	0.5	0.183	29.1	3.31	91.4	15.5
198434	434100	6418400	0.29	29	58.4	187	26.8	14.6	146	336	36.1	2.41	11	49.3	1.22	122	0.042	36.5	221	1.05	0.55	0.175	39.1	3.61	101	15.6
198435	434200	6418400	0.42	42	29.6	133	28.9	7.9	79	278	30.3	1.97	5.26	51.3	0.59	59	0.056	29.5	426	0.636	0.23	0.174	14.7	1.56	86	22.6
198436	434300	6418400	0.48	48	21.3	62.7	25.4	5.88	58.8	116	19.4	1.55	3.6	53.2	0.37	37	0.049	26.8	314	0.313	0.15	0.146	8.17	0.94	47.6	14.4
198437	434400	6418400	0.5	50	25.9	70.5	27	6.96	69.6	136	24.3	1.36	4.47	45.5	0.46	46	0.07	30.4	343	0.346	0.18	0.196	10.8	1.19	52.4	15.7
198438	434500	6418400	0.68	68	55.6	109	26.8	14.1	141	189	30.6	2.27	9.96	29.4	1.51	151	0.056	32.3	214	0.576	0.41	0.232	24.6	2.74	94.3	14
198439	434600	6418400	0.58	58	40	110	31.4	10.4	104	184	27.4	1.86	7.18	29.4	0.74	74	0.066	37.3	231	0.506	0.32	0.257	18.4	2.19	94.9	13.2
198440	434700	6418400	0.47	47	33.4	117	30.5	8.75	87.5	170	27.2	1.51	5.87	30.3	0.65	65	0.058	35.5	268	0.512	0.28	0.248	16.9	1.82	82.6	15.2
198441	434800	6418400	0.68	68	25	97.9	30.3	6.71	67.1	176	26.4	1.29	4.34	33	0.46	46	0.068	33.8	473	0.482	0.18	0.212	11.7	1.2	73.6	18.7
198442	434900	6418400	0.49	49	25.6	60.7	25.4	6.67	66.7	105	22.4	1.31	4.56	36	0.5	50	0.064	27.1	229	0.31	0.2	0.223	11.7	1.32	49.2	10.3
198443	435000	6418400	0.44	44	20.8	91	25	5.5	55	200	37	1.19	3.74	40.3	0.41	41	0.053	25.8	299	0.564	0.17	0.134	9.8	1.19	85.4	10.9
198444	435110	6418400	0.48	48	23.4	75.9	20.9	6.13	61.3	122	25.1	1.42	4.17	39.5	0.45	45	0.047	29.1	266	0.331	0.18	0.088	11.5	1.23	69.2	10.4
198445	435150	6418400	0.46	46	22.3	73.3	21.9	5.8	58	118	23.8	1.35	3.97	36.9	0.44	44	0.053	29.9	258	0.311	0.18	0.176	10.6	1.19	62.3	15.5

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 Catalina Resources completed 105 air core drill holes for 2909m at its Dundas prospect, during Nov & Dec 2022. Drilling is located within Catalina's E63/2046, near Norseman, WA. Air core sampling was undertaken at 1-m intervals using a Meztke Static Cyclone. Most 1-meter samples were dry and weighed between 1.5 and 3 kgms. Occasional ground water intersected at the bottom of holes caused some samples to be wet. 1-meter sample piles from the cyclone were laid out in orderly rows on the ground. Using a hand-held trowel, 4m composite samples were collected from the one-meter piles. This compositing was aimed to reduce assaying costs. These composite samples weighed between 2 and 3 kgms. For any anomalous 4m composite sample assays, the corresponding one-meter resplit samples were collected and assayed in April 2023. Quality control of the assaying comprised the collection of a duplicate sample every second hole, along with the regular insertion of industry (OREAS) standards (certified reference material) every other hole. Composite and resplit samples were sent to Bureau Veritas (BV) labs in Kalgoorlie. Samples were pulverized so that 75% of the sample passes 75µ. A 30-gm charge from each pulp was digested via aqua regia acid and fire assay. Only Au was assayed in Kalgoorlie via BV code FA001, fire assay. Pulps were then forwarded to Bureau Veritas Labs in Cannington for analysis of 48 elements (incl REEs, Li) via a mixed acid digest. BV Code MA102. Resplit samples were assayed via BVs sodium peroxide fusion method, more suitable to extracting refractory elements from the rock. This is a more competed method than a mixed acid digest which is a partial digest method.
techniques	brill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 The drilling contractor was Gyro Drilling from Kalgoorlie. Gyro uses 3m drill rods. Drilling to blade refusal (rock too hard to penetrate); Hole diameter 85mm / 3.5". Air core drilling uses a three-bladed steel or tungsten drill bit to penetrate the weathered layer of loose soil and rock fragments. The drill rods are

Criteria	JORC Code explanation	Commentary
		 hollow and feature an inner tube with an outer barrel (like RC drilling). Air core drilling uses small compressors (750 cfm/250 psi) to drill holes into the weathered layer of loose soil and fragments of rock. After drilling is complete, an injection of compressed air is unleashed into the space between the inner tube and the drill rods inside wall, which flushes the cuttings up and out of the drill hole through the rod's inner tube, causing less chance of cross-contamination. Air core drill rigs are lighter in weight than other rigs, meaning they're quicker and more maneuverable in the bush. Gyro used an Air 750 CFM / 250 PSI Sullair Compressor with additional Air Booster Support 750 CFM / 250PSI.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse grained material.	 Representative air core samples collected as 2- meter intervals, with corresponding chips placed into chip trays and kept for reference at Catalina's facilities. Most samples were dry and sample recovery was very good. Catalina does not anticipate any sample bias from loss/gain of material from cyclone.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 All air core samples were lithologically logged using standard industry logging software on a notebook computer. Carbonate alteration was logged using hydrochloric acid and magnetism recorded using a hand-held magnetic pen. Logging is qualitative in nature. Drill sample piles and chip trays have been photographed. All geological information noted above has been completed by a competent person as recognized by JORC.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling	 Air core sampling was undertaken on 1m intervals using a Meztke Static Cone splitter. Most 1-meter samples were dry and weighed between 2 and 3 kgms. Samples from the cyclone were laid out in orderly rows on the ground. Using a hand-held trowel, 4m composite samples were collected from the one-meter piles. These composite samples weighed between 2 and 3 kgms. For any anomalous 4m composite sample assays, the corresponding one-meter samples were collected and assayed. Quality control of the assaying comprised the

Criteria	JORC Code explanation	Commentary
	Whether sample sizes are appropriate to the grain size of the material being sampled.	 collection of a duplicate sample every hole, along with the regular insertion of industry (OREAS) standards (certified reference material) every hole. Samples were delivered to Bureau Veritas labs in Kalgoorlie and Perth by Catalina's field personnel. Samples were pulverized so that 75% of the sample passes 75µ. Samples pulps were digested via a mixed acid digest for the composite samples and sodium peroxide fusion for the resplit samples.
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures	•All assaying was completed by Bureau Veritas Labs.
laboratory tests	used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 4m Composite samples were assayed a mixed acid digest. REE, Li and pathfinders were assayed by BV method MA102 (Mixed Acid digestion). BV indicate the mixed acid digestion is an almost complete dissolution method. Anomalous one-meter sample that make up the 4m composite samples were collected. Anomalous one-meter samples were assayed at BV labs, Perth. Samples pulps were digested via a sodium peroxide fusion for the resplit samples. Standards were industry CRMs from OREAS which included low-grade and average- grade. The methods are considered appropriate for this style of mineralization expected. No density data available. BV labs routinely re-assay anomalous assays (greater than 0.3 g/t Au) as part of their normal QAQC procedures.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 No verification of significant intersections undertaken by independent personnel, only the Catalina geologist. Validation of 4m composite assay data will be undertaken to compare duplicate assays and standard assays. Comparison of assaying between the composite samples (mixed acid digest) and the 1-meter samples (peroxide fusion) was made. Data is entered into a software program in a desk top computer for eventual download into the company database.

Criteria	JORC Code explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 All air core drill hole coordinates are in GDA94 Zone 51. Hole coordinates are listed in Appendix 2 of Catalina's announcement dated 27 Feb 2023. All air core holes were located by handheld GPS with an accuracy of +/- 3 m. There is no detailed documentation regarding the accuracy of the topographic control. No elevation values (Z) were recorded for collars. An elevation of 450 mRL was assigned by VG. There were no Down-hole surveys completed as air core drill holes were not drilled deep enough to warrant downhole surveying.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Air core drilling was on a variable line spacing (160m to 500m) and 100m between drill holes. Given the first pass nature of the exploration programs, the spacing of the exploration drilling is appropriate for understanding the exploration potential and the identification of structural controls on the mineralisation. Four- meter sample compositing has been applied.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 The relationship between drill orientation and the mineralised structures is not known at this stage as the prospects are covered by a 3-25m blanket of transported cover. It is concluded from aerial magnetics that the mineralisation trends 000. Dips are unknown as the area is covered by a 3m – 25m blanket of transported cover. Azimuths and dips of air core drilling was aimed to intersect the strike of the rocks at right angles. True Downhole widths of mineralisation are not known until diamond drilling is undertaken.
Sample security	The measures taken to ensure sample security.	 All samples packaged and managed by Catalina personnel up to and including the delivery of all samples to BV labs.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No sampling techniques or data have been independently audited.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known	 The Dundas Project is within E63/2046. They form part of a broader tenement package of four exploration tenements located in the Dundas Goldfields in the Norseman region of Western Australia. The project area was culturally surveyed and cleared in Sept 2022 by the Ngadju Native Title Aboriginal Corporation.

Criteria	JORC Code explanation	Commentary
	<i>impediments to obtaining a licence to operate in the area.</i>	 There are no registered cultural heritage sites within the area. E63/2046 and E63/2048 are held 100% by Catalina Resources. All tenements are secured by the DMIRS (WA Government). E63/2046 and E63/2048 were granted in 2021. They are in a state of good standing and have no impediments.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Only very limited historical exploration has been carried out in the area due to the thin blanket (usually 5 – 20m) of transported cover. In E63/2048, one km spaced auger soil traverses undertaken by AngloGold Ashanti Australia (AngloGold) were completed. A RAB/RC drilling program by Pan Australian Resources during the 1990's identified the presence of gold mineralisation hosted by mafic rocks in E63/2046. Reported intersections include: T4RC032 2m @ 3.5g/t Au from 23m T4RC042 1m @ 2.1g/t Au from 87m The mineralization discussed above remains open, and the associated Au and Cu soil geochemistry (AngloGold's data) suggests the mineralization is much more extensive than indicated by past drilling. Anglo Gold identified several large and robust gold in soil auger geochemical anomalies, up to 6 kms in length, and are spatially associated with the interpreted BLFZ (Boulder Lefroy Fault Zone) in E63/2048 and represents a high priority for targeting by Catalina.
Geology	Deposit type, geological setting and style of mineralisation.	 The Dundas Project forms part of an underexplored green fields region in the Albany Fraser Belt. In 2005, the discovery of the multimillion-ounce Tropicana gold deposit in 2005, 330 kms east of Kalgoorlie in the Albany Fraser Belt, initiated a reassessment of the prospectivity of the province. A program of geophysical surveys and geoscientific work, including age dating of rocks, undertaken by the Geological Survey of Western Australia, during 2006-2010, has subsequently shown the Albany Fraser belt to contain reworked Archaean greenstones. The Project area is now considered to be situated within the inferred SE extensions of the Norseman – Wiluna Belt of the Archaean Yilgarn Craton and comprises a tectonostratigraphic assemblage of mafic, ultramafic and sedimentary dominated units. A major northwest trending fault system transects the tenements and may represent southeast extensions of the prolifically mineralised and regionally continuous Zuleika and Boulder-Lefroy Fault systems. Greenstone belts are commonly hosts to gold and rareelement pegmatites because they are both products of collisional tectonic processes. Rare-element pegmatites form in orogenic hinterlands related to plate convergence. The pegmatites are products of extreme fractional

Criteria	JORC Code explanation	Commentary
		crystallization of some granites, derived from melting of metasedimentary rocks in continental collision zones. The world class Buldannia Lithium Project (Liontown Resources) is situated just 25 kms northwest of Catalina's tenements, interpreted to be within the Zuleika Shear Zone.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	 Appendix 1 (Air core hole assays) lists information material to the understanding of the air core drill holes at the Dundas Projects. Appendix 2 (ultrafine assay results) lists information material to the understanding of the surface geochemistry anomalies that may be drill tested. The documentation for drill hole locations is located in the appendices of this announcement and is considered acceptable by VG. Consequently, the use of any data obtained is suitable for presentation and analysis. Given the early stages of the exploration programs, the data quality is acceptable for reporting purposes. Future drilling programs are dependent on the assays received.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 NA. Drilling sample assay results for most of 48 elements are tabulated in appendix 1. Samples were collected as 4m composite samples from the drill rig. Composite samples are collected purely as a way to reduce assay costs.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not	 NA Exploration has not determined the geometry and extent of any mineralization discussed in this announcement. Further drilling (diamond drilling) is required to ascertain the geometry of any intersection.

Criteria	JORC Code explanation	Commentary
	known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	•Diagrams showing historical drilling data, current drill hole collar plans, downhole air core assaying, surface geochemistry are used in text of this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Exploration results that may create biased reporting has been omitted from these documents. Appendix 1 – Air core downhole assays. Appendix 2 – Ultrafine soil geochemistry.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 No additional exploration data has been reported. All holes were geologically logged but are not all included in this announcement as they were not considered material. Petrographic studies were undertaken to identify the rock types intersected in holes 22DAC066 and 22DAC095. XRD studies were undertaken to identify a blue green mineral intersected in hole 22DAC016, originally incorrectly described as aqua marine. XRD identified the mineral as kyanite.
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Ultrafine soil sampling is planned over the regional area of the air core drilling. Further drilling (including RC drilling) in E63/2046 is dependent on drill targets generated from the regional geochemistry. A new CMP has been submitted to the DBCA detailing Catalina's plans for work in the other tenements. Regional detailed aerial magnetic surveys may commence over the priority target areas, as identified by Catalina.