

ASX/MEDIA RELEASE

Dated: 31 July 2014

MINERAL RESOURCE ESTIMATE ON THE LAKUWAHI POLYMETALLIC DEPOSIT, ROMANG ISLAND, INDONESIA DATED 24 JULY 2014 FROM MINING ASSOCITES PTY LTD REFERRED TO IN COMPANY ANNOUNCEMENT TODAY

The Mineral Resource Estimate referred to above is annexed hereto.

Ian Mitchell Company Secretary Robust Resources Limited

Mining Associates Pty Ltd ABN 29 106 771 671 Level 4, 67 St Paull's Terrace PO Box 161 Spring Hill QLD 4004 AUSTRALIA T61 7 3831 9154 F61 7 3831 6754 Www.miningassociates.com.au

Memorandum

Date	24/7/14
То	John Levings
From	I. Taylor
СС	J. Ogierman
Subject	Mineral Resource Estimate on the Lakuwahi Polymetallic Deposit, Romang Island, Indonesia

This memorandum provides details of an updated Mineral Resource Estimate for polymetallic mineralisation at the Lakuwahi Project, Romang Island, Indonesia (Figure 1), and dated 24/7/2014.

Regional Location of Lakuwahi Project (Source after Bing Maps 2013)

At the request of Mr John Levings of Robust Resources Limited ("Robust"), Mining Associates Pty Ltd ("MA") was asked to report a Mineral Resource Statement for polymetallic mineralisation at the Lakuwahi Project based on an updated mineral resource estimate.

Ian Taylor (AusIMM(CP)) of Mining Associates visited the property in September 2013. Field exposures and numerous drill holes were examined during this visit, and an assessment was made of the procedures for logging, sample preparation, quality control and SG measurement and data collation in preparation for this report.

MA has not been requested to provide an Independent Valuation, nor has MA been asked to comment on the Fairness or Reasonableness of any vendor or promoter considerations, and therefore no opinion on these matters has been offered.

Lakuwahi is considered to be a high sulphidation exhalative volcanogenic massive sulphide ("VMS") system, comparable to mineralisation on nearby Wetar Island. Recent work also suggests the possibility of late stage low sulphidation mineralisation. A number of different mineralised domains have been defined by drilling which include Batu Mas, Batu Hitam, Batu Hitam West, Batu Perak, Batu Jagung and Batu Putih (Figure 1). Overall geometry of mineralisation is characterised by higher level, flat to gently dipping exhalative VMS zones, strata-bound, sub-horizontal breccia/stockwork zones and more steeply dipping

breccia zones beneath interpreted as feeder structures. While the exhalative zones are reasonably consistent spatially, the location and extent of breccia zones is less well constrained.

Figure 1: Mineralised Zones at Lakuwahi Polymetallic Deposit. (Source Robust 2014)

Sample QA/QC data was reviewed for exploration drilling programmes completed by Robust between October 2012 and May 2014. QC procedures included the insertion of certified reference materials (CRM) and blanks, and submission of pulp samples to a referee laboratory. QC sample insertion rates were considered acceptable for CRM and blanks. Absence of field duplicates is not considered a major cause of concern given the generally low variability of assay results and the sole use of diamond core for sampling. QC analysis results indicate acceptable levels of precision and accuracy, and it is MA's opinion that the data is suitable for use in resource estimation.

Metallurgical and mining work by Robust has shown potential for economical viable extraction of gold, silver, lead and zinc by floatation and producing a single concentrate. Approximately 85% of the resource is within 100m of the surface and at a cut off of 0.4 g/t Aueq^{*1}, is potentially viable for economic extraction by open-pit mining.

JORC categorised Mineral Resources for the Lakuwahi Polymetallic Deposit (as at the end of June 2014) have been classified as indicated and inferred confidence categories on a spatial, areal and zonal basis and are listed in the tables below. The Lakuwahi Polymetallic deposit has 81.72 Mt at 0.40 g/t Au, 25.8 g/t Ag, 0.58 % Pb and 0.60 % Zn for 1.042 Moz Au, 67.9 Moz Ag, 1,040 Mlb Pb and 1,086 Mlb Zn.

Reso	esource ^{*2} Grade					Metal						
> 0.4 g/t Au eq	Tonnes	Au g/t	Ag g/t	Cu %	Pb %	Zn %	Oz Au	Ag Moz	Cu Mlb	Pb Mlb	Zn Mlb	
Inferred	43,959,000	0.34	28.6	0.08	0.64	0.72	479,000	40.4	73	621	700	
Indicated	37,758,000	0.46	22.7	0.07	0.50	0.46	563,000	27.5	56	419	386	
Total	81,717,000	0.40	25.8	0.07	0.58	0.60	1,042,000	67.9	128	1,040	1,086	

|--|

Note: According to Clause 27 of the JORC Code 2012 edition: "in a public report of a Mineral Resource for a significant project for the first time, or when those estimates have materially changed from when they were last reported, a brief summary of the information in relevant sections of Table 1 must be provided". Table 1 is included in Appendix 1 of this memo and must accompany any reporting of Mineral Resources.

Note *1: Gold Equivalent Cut Off Parameters.

This resource is only reported as resource tonnes and grade of individual elements, it is Robusts intention to continue metallurgical test work to determine actual recoveries achieved in a floatation circuit with a single concentrate for sale. A summary of preliminary floatation results are presented in Appendix 1: JORC Table 1 Section 3 under the heading Metallurgical factors or assumptions.

The contained metal equivalence formula is based on the following assumptions in Table 2. Assumptions for reasonable prospects for eventual economic extraction applied to this deposit include but may not be limited to those presented in Table 2. It should be noted these factors, such as costs, metal prices and recoveries, low strip ratio, depth of ore are assumed, based on the competent person's experience and these implicit costs may not reflect actual costs.

Parameter	Unit	Value
Mill throughput	Mtpa	1.5
Capital Cost	US\$/t ore	\$1.36
General and Admin cost	US\$/t ore	\$3.00
Processing cost	US\$/t ore	\$ 16.50
Average mining cost	US\$/t ore	\$5.20
Total Cost	US\$/t ore	\$ 26.06
Gold Price	US\$/Oz	\$ 1,450.25
Silver Price	US\$/Oz	\$ 24.76
Lead Price	US\$/lb	\$0.96
Zinc Price	US\$/lb	\$0.88
Modified recovery – Au		85%
Modified recovery – Ag		85%
Modified recovery – Pb	80%	
Modified recovery – Zn	80%	
Gold Equivalent including Au, A	g, Pb and Zn	0.36

Table 2: Assumptions for eventual economic extraction.

The Modified recovery takes into account preliminary metallurgical and assumed payable recoveries (shown in Table 2). These modified recovery factors and metal prices (Table 2) were applied to each element (Au, Ag, Pb and Zn) used in the calculation of the gold equivalent formula. The specific formula is:

Au_eq = Au g/t x \$/g Au x Au rec%+ Ag g/t x \$/g Ag x Ag rec% + Pb % x \$/% Pb x Pb rec% + Zn% x \$/Zn% x Zn rec%

Metal prices are the average of the 12 months of Financial Year 2014 from July 2013 to June 2014 taken from published World Bank Commodity Price Data.

http://siteresources.worldbank.org/INTPROSPECTS/Resources/334934-1304428586133/pink_data_m.xlsx.

The metal prices thus used in the calculation are the average Gold price of USD \$1450.26 per ounce, average Silver price of USD \$24.76 per ounce, average lead price of US \$2118.19 per tonne and an average zinc price of US \$1947.89 per tonne. Metallurgical flotation test-work has been carried out on polymetallic sulphide mineralisation similar to the material reported herein. High recoveries of all metals, including gold and silver, have been achieved in these tests and recovery levels of all metals are similar (refer to Robust ASX announcement of November 30, 2010 titled "Sulphide Metallurgical Tests Return").

Note *2 - Rounding and Significant Figures

Totals in the tables may differ from their components due to rounding; the number of significant figures does not imply an added level of precision.

Figure 2: Plan view of Block Model showing resource categories of the Lakuwahi Polymetallic deposits

GEOLOGICAL INTERPRETATION

Several geological cross sections were supplied by Robust's Exploration Manager, Joseph Ogierman (Figure 3). The sections aided in the digital interpretation of the mineralisation from which 3D wireframes were created.

Figure 3: Section interpretation (9,157,080 m North, Ogierman 2013)

The Lakuwahi polymetallic deposit is a high sulphidation exhalative VMS system. Exhalative barite-rich polymetallic mineralisation is identified stratigraphically above multiple stockwork feeder zones associated with intense hydrothermal alteration within an exposed submarine caldera.

At least four phases of hydrothermal alteration and associated mineral paragenetic assemblages are recognised. They can be divided into three four main categories:

- 1. an early non-mineralised stage of fracturing, veining and alteration;
- 2. followed by at least two mineralised stages of fracturing, brecciation and veining, both of which were associated with base + precious metals and barite;
- 3. a later, epithermal event representing the waning of the main mineralising event, with high-grade silver associated with chalcedonic veining. Base metals and barite are only a minor component
- 4. a late stage event which caused replacement of carbonate rocks with Mn oxides associated with anomalous base metals and trace elements but almost no precious metals.

All the mineralising events are interpreted to be originating from the same hydrothermal system which was re-activated several times during the course of caldera formation. The hydrothermal system is still active with sulphur fumeroles observed in the Batu Putih and Batu Perak Prospects.

ESTIMATION

This resource focuses on the mineralisation associated with the base and precious metals. Sectional interpretations were carried out in Surpac 6.6 with separate mineralisation domains interpreted based on 0.2g/t Au, 10g/t Ag and a combined base metal interpretation of 1% Cu + Pb + Zn. A two metre minimum width (mining or mineralisation) was applied to the interpretation. The sectional interpretations were used to create 3D wireframes to constrain the estimation. Each area and wireframe was treated as separate domains with hard boundaries applied. All elements were estimated using ordinary kriging. Density was estimated using inverse distance squared. Each element was estimated in the following order: Gold and silver were estimated within the 0.2 g/t gold domains. Any blocks occurring within the 10 g/t silver domains were overwritten with the higher grade silver estimate. Finally copper, lead and zinc were estimated into the block model. Blocks within each subset (Au, Ag or combined base metal) will have each element assigned to that block. Likewise if a block is only within two subsets only estimates for those two elements will be stored. Informing samples were composited to 2 m. A summary of the informing sample statistics, grade caps applied and the estimation parameters are presented in Appendix 2.

No dilution, ore loss, or metallurgical recoveries are applied to this model and internal dilution is kept to a minimum.

Table 3 shows the Lakuwahi Polymetallic project reported by deposit location. The location of the various deposits is displayed in Figure 2. Table 4 shows the polymetallic project reported various cut-offs.

Deposit	Resource Category	Oxidation State	Tonnes	Gold (g/t)	Silver (g/t)	Copper (%)	Lead (%)	Zinc (%)	Gold Oz	Silver Oz	Copper Mlb	Lead Mlb	Zinc Mlb
	Inferred	Oxidised	3,810,000	0.35	36.8	0.08	0.70	0.75	43,000	4,504,000	6.38	58.99	62.63
Ratu Dorak		Fresh	16,556,000	0.31	13.1	0.06	0.50	0.61	167,000	6,973,000	22.77	183.94	222.37
Dalu Felak	Indicated	Oxidised	665,000	0.27	8.0	0.07	1.06	0.84	6,000	170,000	0.96	15.58	12.38
		Fresh	3,583,000	0.34	9.4	0.04	0.50	0.57	39,000	1,078,000	3.51	39.60	44.75
Sub Total			24,615,000	0.32	16.1	0.06	0.55	0.63	255,000	12,726,000	33.62	298.12	342.14
	Inferred	Oxidised	4,364,000	0.65	59.3	0.08	0.85	0.84	91,000	8,314,000	7.74	81.83	81.05
Potu Dutib		Fresh	9,430,000	0.43	43.4	0.06	0.62	0.70	129,000	13,172,000	12.26	129.73	144.47
	Indicated	Oxidised	1,343,000	0.83	66.3	0.10	1.14	1.10	36,000	2,861,000	3.07	33.88	32.68
		Fresh	2,191,000	0.70	51.4	0.08	0.94	1.14	49,000	3,621,000	3.88	45.33	55.24
Sub Total			17,327,000	0.55	50.2	0.07	0.76	0.82	305,000	27,966,000	26.95	290.75	313.41
	Inferred	Oxidised	1,070,000	0.40	14.3	0.01	0.03	0.01	14,000	494,000	0.13	0.80	0.13
Potu Moo		Fresh	2,439,000	0.32	12.5	0.02	0.25	0.26	25,000	981,000	1.30	13.34	13.98
Dalu Mas	Indicated	Oxidised	3,067,000	0.96	31.1	0.04	0.25	0.09	95,000	3,065,000	2.95	16.57	5.92
		Fresh	5,334,000	0.37	17.8	0.07	0.54	0.42	64,000	3,050,000	8.73	63.69	49.92
Sub Total			11,910,000	0.51	19.8	0.05	0.36	0.27	197,000	7,590,000	13.12	94.41	69.95
Batu Mas Deeps	Inferred	Oxidised	43,000	0.70	24.4	0.36	1.94	0.95	1,000	34,000	0.34	1.84	0.90
		Fresh	2,389,000	0.08	5.8	0.41	2.76	3.20	6,000	444,000	21.34	145.32	168.60
Sub Total			2,432,000	0.09	6.1	0.40	2.75	3.16	7,000	478,000	21.68	147.16	169.51
	Inferred	Oxidised	258,000	0.24	11.7	0.03	0.24	0.25	2,000	97,000	0.15	1.36	1.41
Batu Hitam		Fresh	357,000	0.16	9.37	0.05	0.49	0.51	2,000	108,000	0.36	3.82	4.01
	Indicated	Oxidised	6,356,000	0.50	25.7	0.06	0.40	0.25	103,000	5,257,000	8.08	56.59	35.26
		Fresh	6,972,000	0.23	18.5	0.08	0.61	0.64	51,000	4,157,000	12.40	93.26	97.83
Sub Total			13,943,000	0.35	21.5	0.07	0.50	0.45	157,000	9,619,000	20.99	155.04	138.51
	Inferred	Oxidised	-	-	-	-	-	-	-	-	-	-	-
Potu Hitom West		Fresh	1,000	0.24	9.6	0.00	0.00	0.00	-	-	-	-	-
Datu mitam west	Indicated	Oxidised	1,811,000	0.80	26.9	0.04	0.29	0.11	47,000	1,568,000	1.53	11.58	4.34
		Fresh	6,434,000	0.36	12.9	0.07	0.30	0.33	74,000	2,678,000	10.59	42.43	47.46
Sub Total			8,246,000	0.46	16.0	0.07	0.30	0.28	121,000	4,246,000	12.12	54.00	51.79
Batu Jagung	Inferred	Oxidised	2,156,000	0.00	57.4	0.00	0.00	0.00	-	3,981,000	-	-	-
		Fresh	1,086,000	0.00	36.9	0.00	0.00	0.00		1,287,000	-	-	-
Sub Total			3,242,000	0.00	50.50	0.00	0.00	0.00	-	5,267,000	-	-	-

Table 3: Resource by Deposit and oxidation state (> 0.4 g/t AuEq*1)

See Notes *1 and *2

Table 4: Lakuwahi polymetallic Project reported at various Gold equivalent cut off grades

									-		
> 0.4 g/t Au eq											
Resource	Tonnes	Au g/t	Ag g/t	Cu %	Pb %	Zn %	Au Oz	Ag Moz	Cu Mlb	Pb Mlb	Zn Mlb
Inferred	43,959,000	0.34	28.6	0.08	0.64	0.72	479,000	40.4	73	621	700
Indicated	37,758,000	0.46	22.7	0.07	0.50	0.46	563,000	27.5	56	419	386
Total	81,717,000	0.40	25.8	0.07	0.58	0.60	1,042,000	67.9	128	1,040	1,086

> 0.6 g/t Au eq

Resource	Tonnes	Au g/t	Ag g/t	Cu %	Pb %	Zn %	Au Oz	Ag Moz	Cu Mlb	Pb Mlb	Zn Mlb
Inferred	30,530,000	0.38	35.3	0.11	0.91	1.03	376,000	34.7	71	614	691
Indicated	26,793,000	0.53	28.5	0.09	0.69	0.63	459,000	24.5	54	408	375
Total	57,323,000	0.45	32.1	0.10	0.81	0.84	835,000	59.2	125	1,022	1,065

> 0.8 g/t Au eq

Resource	Tonnes	Au g/t	Ag g/t	Cu %	Pb %	Zn %	Au Oz	Ag Moz	Cu Mlb	Pb Mlb	Zn Mlb
Inferred	25,095,000	0.42	38.4	0.12	1.08	1.21	341,000	31.0	69	598	670
Indicated	22,552,000	0.59	31.2	0.10	0.77	0.70	427,000	22.7	50	383	349
Total	47,647,000	0.50	35.0	0.11	0.93	0.97	767,000	53.7	119	981	1,019

> 1.0 g/t Au eq

Resource	Tonnes	Au g/t	Ag g/t	Cu %	Pb %	Zn %	Au Oz	Ag Moz	Cu Mlb	Pb Mlb	Zn Mlb
Inferred	21,279,000	0.47	40.7	0.14	1.22	1.36	318,000	27.8	64	573	639
Indicated	18,733,000	0.66	34.4	0.11	0.83	0.75	395,000	20.7	45	345	312
Total	40,012,000	0.55	37.7	0.12	1.04	1.08	713,000	48.6	109	918	951

See Notes *1 and *2

1 APPENDIX 3: JORC CODE, 2012 EDITION – TABLE 1

1.1 SECTION 1 SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 HQ and NQ sized diamond drill core. Triple-tube wireline standard equipment. 1 metre, half core samples collected in visually mineralized intervals. 2-metre quarter core samples in visually non-mineralised or weakly mineralised core. Whole sample core pulverized to 80% passing 200 mesh. 50g charge fire assay for gold. Wet geochemical or XRF techniques for silver and other metals. Regular assay suite: Au, Ag, As, Sb, Cu, Pb, Zn, Ba and Mn.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 HQ and NQ sized diamond drill core. Triple-tube wire line standard equipment. Core is oriented where ever possible using the spear technique.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Recovery is measured in the core tube by the driller and a marker inserted into the core tray noting any core loss. Core recovery is double checked by the geologist when logging the hole. No relationship between core recovery and grade has been discovered.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All core is geologically logged and photographed prior to sampling. Structural measurements are obtained where core orientation has been successful. Geotechnical logging is not carried out. Logging is semi-quantitative and 100% of reported intersections have been logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Continuous half core is sampled over 1-metre intervals as a general rule in visually mineralized intervals. Where the core is visually unmineralised or weakly mineralized then continuous quarter core sampling is carried out over 2 or 3 metre intervals to economize on assay and freight costs. Splitting core is done with a diamond saw. Sampling intervals are made to honour major geological boundaries, which may result in sampling intervals slightly less or slightly more than 1 metre. Quality control procedures include the insertion of standards (1 in 25 samples) and blanks (1 in 20 samples) into the regular sample number sequence. If any blank or standard is out of acceptable limits, re-assay is requested of the laboratory. Sampling size is considered to be appropriate. While no field duplicates are collected, assay repeatability for gold and other metals has never been an issue at Lakuwahi.
Quality of	 I ne nature, quality and appropriateness of the assaying and laboratory procedures used and whether the 	 All samples are pulverized and assayed at Intertek Testing Services laboratory

Criteria	JOI	RC Code explanation	Commentary						
assay data and laboratory	•	technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining		http://www : The follow used:	<u>intertek.</u> wing ele	<u>.com/mir</u> ments a	nerals/glo nd ITS te	<u>bal-services/</u> echniques are	
tests		reading times, calibrations factors applied and their		Elements	Units:	Lower	Upper	Scheme	
		derivation, etc.		Au	ppm	0.01	50	FA51	
	•	standards, blanks, duplicates, external laboratory		Ag	ppm	1	100	GA02	
		checks) and whether acceptable levels of accuracy (ie		Cu	ppm	50	-	GA50S	
		lack of blas) and precision have been established.		Pb	ppm	50	-	GA50S	
				Zn	ppm	50	-	GA50S	
				Mn	ppm	50	-	GA50S	
				As	ppm	10	-	XR02	
				Sb	ppm	10	-	XR02	
				Ba	%	0.01	100	XR02	
				Ag	ppm	5	10000	GA30	
			•	standards samples) sequence. re-assay onwards) increased f 1:50 sam independe (Ultratrace No materia have occur	(1 in 25 into the if any block insertion to 1:20 ple pull nt labor) on a real issues rred since	sample ne regu lank or s quested. n rates ps are pratory gular qu s of assa e drilling	s) and b llar san tandard Recei s of st in Pei arterly fre ay bias o commei	lanks (1 in 20 nple number is out of spec, nt (LWD227 andards has o a second rth Australia equency. r repeatability nced in 2008	
		The varification of cignificant interpositions by either		Coloulation	a of	ain aifi a a	nt inter		
Verification of sampling and assaying	•	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	•	Calculation carried ou Levings, F. Twinned considered Electronic password- network ba (Romang I Physical as All data e database g No adjustm	IS OF t by Co AusIMM holes a l to be re data is protected acked-up sland, J ssay rep entry is geologist nents to	significa mpetent are ger equired. stored a d Geoba across akarta (orts are under (assay da	nt inter Person nerally r and repor ank soft several Office, Sy filed in Ja control o ata are ca	sections are John Andrew not used or ted using the ware. Data is physical sites ydney Office). akarta office. f a specialist arried out.	
Location of	•	Accuracy and quality of surveys used to locate drill	•	All drill	collars	are su	rveved	by company	
data points	•	holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	•	surveyors independe survey stat All coordin South. Topograph established minus 0.3r	using a ntly ver tions. ates are ic contro d using t n).	Total St ified sy quoted ol is exce he LIDA	ation and stem of in UTM- ellent and R system	d tied in to an triangulation UTS Zone 52 I was n (plus or	
Data spacing and distribution	•	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	•	Data spac appropriate exploration to confirm spacing of West and drilled at 8 40m.	ing (drill project, interpr 40 m is Batu H 0 m spa	-hole sp ne geol infill dri etations used in itam. Ba cing with	acing) is ogy. As lling is of . In gen Batu Ma atu Pera n few sec	variable and this is an ten necessary leral, drillhole s, Batu Hitam k is currently ctions down to	
Orientation of data in relation	•	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	•	VMS exha levels and orientation	llative m is sub . Breccia	nineralisa horizont a style r	ation occ al to ger nineralisa	curs at higher htly dipping in ation below is	

Criteria	JORC Code explanation	Commentary
to geological structure	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 commonly irregular and drilling is oriented to intersect as perpendicular as possible to the gross strike and dip of the deposits. 60° inclined angled holes are used as a compromise to test exhalative and breccia zones together. This has resulted in drill holes oriented parallel to breccia zones in some instances. No material sampling bias is considered to have been introduced by the drilling direction
Sample security	• The measures taken to ensure sample security.	 Company security personnel and Mobile Brigade Police accompany the samples from the base camp (by porter, company boat and charter plane) to Kupang in West Timor or Ambon Island. At these points the samples are dispatched by commercial flight door to door courier to ITS laboratory in Jakarta. This is considered to be a secure and reasonable procedure and no instances of tampering with samples have occurred since drilling commenced in 2008.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Audits of sampling procedure have been completed in 2011 and 2013 by Micromine Consulting and Mining Associates respectively, No material issues were raised.

1.2 SECTION 2 REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Robust's tenure on Romang Island is under the Indonesian national Izin Usaha Pertambangan or Mining Business License (IUP) system. Robust, has a direct 70% interest in the 5 IUPs totaling 10,000 Ha through the title holder company PT Gemala Borneo Utama. The Robust IUPs are in exploration stage and must be converted to production stage by March 2015. It is anticipated that the conversion will take place in the first half of 2014. The other 30% shareholder in the IUPs is Indonesia's Salim Group. Salim group is also a major shareholder in Robust Resources Limited. Robust's IUPs are in "production forest" and as such require a "borrow and use" permit from the Indonesian department of forestry. Robust has current borrow and use permits for its 5 IUPs. All 5 Robust IUPs have been published on the Indonesian Mines Department "Clean and Clear" list.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 In 1998 and 1999 Billiton (now BHP Billiton) conducted 2 diamond drilling programs totalling 14 holes within the Lakuwahi Caldera. Robust's first drill holes in 2008 was numbered LWD015 in recognition of the 14 prior Billiton holes. Results obtained by Robust are entirely consistent with the earlier results from the Billiton work.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Mineralisation at Lakuwahi is considered to by hydrothermal in type. Mineralisation occurs in a caldera setting. Four styles of mineralisation have been recognized. Breccia – style 'feeder zones' containing galena, sphalerite, chalcopyrite, barite, pyrite, gold and silver (and oxidized portions of this type). Exhalative VMS. Laterally extensive horizon

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary						
		 containing galena, sphalerite, chalcopyrite, barite, pyrite, gold and silver Epithermal veins – chalcedinc quartz with silver sulphosalts and pyrite Manganese Oxide: replacement of limestone. 						
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Not applicable to this report. All drill data was used to constrain the interpretation and inform the estimation. 						
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Informing Samples were composited to two metre lengths honouring the geological boundaries and adjusted where necessary to ensure that no residual sample lengths have been excluded (best fit). Samples were selected based on geological interpretation wireframes using the following cutoffs: high grade Au – 0.5 g/t; low grade Au – 0.1 g/t; silver – 10 g/t; combined Cu, Pb, Zn – 1% Grade capping was applied to all elements separately, using capping values that differed by domain. Au equivalent values were used for defining cutoff grades for reporting. Metal prices used were averages for the 2 years July 2012-June 2014: Au \$1450.25/oz; Ag \$24.76/oz; Pb \$0.96/lb; Zn \$0.88/lb recoveries applied were 85% for gold and silver and 80% for Lead and Zinc. Au_eq = Au g/t x \$/g Au x Au rec% + Ag g/t x \$/g Ag x Ag rec% + Pb % x \$/% Pb x Pb rec% + Zn% x \$/Zn% x Zn rec% 						
Relationship between mineralisation widths and intercept lengths Diagrams	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). Appropriate maps and sections (with scales) and tabulations of interactions and tabulations of interactions and tabulations. 	 In general down-hole lengths are reported due to the irregular nature of breccia style mineralisation. Plan views and sectional views are included in 						
	tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	this report.						
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Not applicable to this report. The drill hole database contains all flagged drill hole assays within each mineralised interpretation. 						
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Not applicable to this report.						

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Infill drilling for better definition.

1.3 SECTION 3 ESTIMATION AND REPORTING OF MINERAL RESOURCES

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary					
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 A selection of drill holes (~5%) were selected for validation purposes by MA. Original drill logs, collar pickups, down hole survey data and core photos were inspected while on site. Drill core inspection on-site. GBU employs a database GIS geologist in Jakarta to manage the geological database. 					
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Ian Taylor (AusIMM(CP)) of Mining Associates visited the property in September 2013. Field exposures and numerous drill holes were examined during this visit, and an assessment was made of the procedures for logging, sample preparation, quality control and SG measurement. 					
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The main data used to interpret the geometry of mineralised structures has been surface mapping and drilling. Geological interpretation was conducted in 3D space using separate wireframes for high grade Au, low grade Au, Ag and combined base metals (Cu+Pb+Zn%). Stratabound VMS mineralisation is relatively consistent in grade, but local short-scale variability in thickness occurs. Breccia-style mineralisation is generally less well defined in terms of orientation and extent. Mineral resource estimation was conducted in 3D space using ordinary kriging to inform a block model. 					
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 Polymetallic mineralisation has been defined in six main areas: Batu Jagung (150m x 300m x 0-50m); Batu Perak (600m x 800m x 0-100m); Batu Putih (200m x 400m x 0-80m); Batu Mas (280m x 500m x 0-290m); Batu Hitam West (225m x 400m x 0-150m); Batu Hitam (275m x 850m x 0-120m) Mineralisation extends from at, or near surface to a maximum depth below surface of 230 m. The majority of ore (85%) is within 100m of the surface. Deeper parts of Batu Mas are considered to have underground mining potential as the feeder vein at depth has higher lead, silver and zinc grades. 					
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. 	 Estimation was undertaken in Surpac. Kriging of 20 x 20 x 10m blocks, utilising sub blocks down to 5 x 5 x 2.5m for volume definition. Drill hole samples were composited to 2 metres. Block size is considered appropriate to mineralisation orientation and drill pattern. (Approximately half dominant drill spacing). Experimental variograms were modelled in Surpac for Au (HG and LG), Ag (HG and LG) and base metals (Cu, Pb, Zn) within each domain separately. 					

Criteria	JORC Code explanation	Commentary
	 The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 Variogram models are generally well defined for all elements. Some sub-domains had insufficient samples to create variograms and in these cases variography results from the better informed subdomain were used. Variogram and search ellipse parameters used summarised in separate table. Search neighbourhood: min samples 5, max 20, with maximum of 3 samples per drill hole, maximum search distances and anisotropy orientations varied by domain and element on basis of variography. No other variables were considered in this resource estimate. Sub-blocking of 5 m x 5 m x 2.5 m for volumes approximating potential selective mining unit. Ore loss and dilution for reserve conversion was not applied. Mineralisation wireframes were used to constrain estimates for Au (HG and LG), Ag (HG and LG) and base metals (Cu, Pb and Zn) in 3D space. Informing samples were composited to two metres, grade capping was applied by element and domain to reduce the effect of outlier grades on the estimate. Global mean grades for estimated blocks and drillhole samples compared closely to estimates. Ordinary krige estimates were compared to nearest neighbour and inverse distance estimates, to assess the impact of data clustering semivariograms and sensitivity to estimation method. No reconciliation data is available for Lakuwahi project as no mining has taken place.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	 Tonnages are based on dry tonnes. Density samples were oven dried for 12 hours prior to using the immersion method to determine the dry density of the host rock.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	 Assumed costs for Administration, mining and processing were applied to the deposit. It is assumed that Mineral Processing will produce a single concentrate via a float and concentrator circuit. Au equivalent values were used for defining cutoff grades for reporting. Metal prices used were averages for the 2 years July 2012-June 2014: Au \$1450.25/oz; Ag \$24.76/oz; Pb \$0.96/lb; Zn \$0.88/lb recoveries applied were 85% for gold and silver and 80% for Lead and Zinc. Au_eq = Au g/t x \$/g Au x Au rec%+ Ag g/t x \$/g Ag x Ag rec% + Pb % x \$/% Pb x Pb rec% + Zn% x \$/Zn% x Zn rec%
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 Polymetanic mineralisation commences close to the surface, is amenable to bulk mining methods on a relatively small scale (110t excavator); Smallest mining unit of 25m³ is envisaged. Robust envisages open pits targeting oxide and sulphide material
Metallurgical factors or	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining 	 Initial characterization test work indicates that Lakuwahi Polymetallic deposits is amenable to Bulk Rougher Float with a single concentrate.

Criteria	JORC Code explanation	Commentary							
assumptions	reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where	Independent Metallurgical Operations Ltd (IMO) prepared a Preliminary Flotation Test work Report for Robust, (Jan 2011) shows good metal recoveries.							
	this is the case, this should be reported with an explanation of the basis of the metallurgical	Bulk Rougher (BR) 20.9 96.5 93.7 98 92.1 95.3							
	assumptions made.	Differential							
		BR/Differential							
		Cleaner 20.5 96.2 93.1 98 89.3 94.5							
		 Preliminary Testwork provides direction for further metallurgical test work, e.g. Litho-geochemistry. 							
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 Preliminary investigations have identified a number of potentially suitable locations for storage of waste and tailings. Acid rock drainage testing has not been performed on the polymetallic resource at this early stage of development, MA notes there is abundant limestone at the project. Preliminary investigations have been conducted on acid rock drainage testing has been conducted on sulphide rich base metal samples. Preliminary investigations have identified that minor amounts of base & heavy metals contained in the Lakuwahi mineralisation have very low solubility under natural environmental conditions (eg. Pb, Zn, Cd etc) Further environmental test work is planned to qualify metal and element deportment under mining and processing conditions and market applications. Flora and fauna assessments of the site are ongoing and have raised no particularly sensitive issues. 							
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Each sample is a minimum of 5 cm long and up to 25 cm. The samples are dried in a 105-110°C oven for 12 hours, and then allowed to cool to room temperature. The sample is then weighed dry on a scale with 0.01 gram accuracy. The sample is attached to a harness connected to the scale and lowered into a bucket of water in order to determine its mass in water. The wet sample is then weighed dry on a scale with 0.01 gram accuracy. Volume of the sample = mass of wet sample in air – mass of sample in water. Specific gravity = mass of dry sample in air / volume sample. 9327density samples are available, of which 3420 are from mineralised material. The Bulk Density for mineralised material is currently assigned as 2.33, oxide material 2.0, partially oxidized material 2.2 and fresh material 2.23. 							
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). 	 Data quality, drill hole spacing and geological continuity and model have all been considered sufficient to classify the mineralisation as a resource. High confidence in the quality of the data justified the classification of indicated and inferred resources; the data quality does not preclude 							

Criteria	JORC Code explanation	Commentary					
	 Whether the result appropriately reflects the Competent Person's view of the deposit. 	 measured resources. Geological continuity has been demonstrated at 40 m grid spacing over the entire strike of Polymetallic deposit. The mineralisation commonly outcrops demonstrating continuity at surface. Further metallurgical test work and product market is recommended before further studies are carried out. 					
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	 No external audits or reviews of the resource estimate have been carried out to date. 					
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the procedures of the procedures of the assumptions made and the procedures used. 	 There is sufficient geological and sampling information to define indicated and inferred resources. The quality of the data does not preclude the classification of measured resources. More work is required to define metallurgical characteristics of mineralisation and relative recoveries of metals. The ordinary kriging result, due to the high level of smoothing, should only be regarded as a global estimate, and is suitable as a life of mine planning tool. Should local estimates be required for detailed mine scheduling techniques such as Uniform conditioning or conditional simulation would be required. 					

1.4 SECTION 4 ESTIMATION AND REPORTING OF ORE RESERVES

(No ore reserves are reported)

2 APPENDIX 2: ESTIMATION PARAMETERS

			Uncapped Composite Data C			Capped C	composi	l	Grade			
Deposit							#				%	
	Domain	Element	Count	Mean	Maximum	CV	Capped	Mean	Сар	CV	Сар	%Δ
Batu Hitam	BH1	Au LG	589	0.33	1.84	0.5	3	0.32	1.1	0.5	1%	-1%
		Cu	779	0.14	3.54	1.7	12	0.13	0.9	1.2	2%	-8%
		Pb	779	1.06	8.48	1.1	12	1.04	5.3	1.0	2%	-2%
		Zn	779	0.82	6.58	1.0	12	0.80	3.5	1.0	2%	-2%
	BH2	Au LG	453	0.30	1.27	0.5	3	0.30	1.1	0.5	1%	0%
		Cu	467	0.11	1.65	1.3	7	0.10	0.6	1.0	1%	-6%
		Pb	467	0.92	6.95	0.8	5	0.90	4.5	0.7	1%	-2%
		Zn	467	1.00	12.46	1.0	5	0.96	4.0	0.8	1%	-4%
	BH3	Au LG	140	0.28	0.97	0.5	1	0.28	0.9	0.5	1%	0%
	BH5	Au HG	456	1.15	14.48	1.0	3	1.13	7.1	0.9	1%	-2%
	BH9	Ag	1188	39	640	1.3	18	37	213	1.1	2%	-5%
Batu Hitam	BHW1	Au LG	350	0.36	5.79	1.0	1	0.36	4.8	0.9	0%	-1%
West		Cu	278	0.18	1.71	1.2	5	0.17	0.9	1.1	2%	-4%
		Pb	278	1.18	14.23	1.3	5	1.13	7.3	1.1	2%	-4%
		Zn	278	0.81	13.49	Data Composite Data Grade # Mean Cap CV Cap % 0.5 3 0.32 1.1 0.5 1% -1 1.7 12 0.13 0.9 1.2 2% -2 1.1 12 0.03 0.9 1.2 2% -2 1.0 12 0.80 3.5 1.0 2% -2 0.5 3 0.30 1.1 0.5 -2% -2% 0.5 3 0.30 1.1 0.5 -2% -2% 0.5 3 0.90 4.5 0.7 1% -2% 1.0 1 0.28 0.9 0.5 1% -2% 1.0 1 0.28 0.9 0.5 1% -2% 1.1 0.4 0.9 0.5 1% -2% -4 1.1 0.28 0.17 0.9 1.1 2% -4		-7%				
	BHW2	Au LG	78	0.28	0.99	0.5	1	0.28	1.0	0.5	1%	0%
		Cu	175	0.27	2.69	1.5	4	0.26	1.7	1.3	2%	-4%
		Pb	175	1.00	21.94	2.0	2	0.92	8.9	1.5	1%	-8%
		Zn	175	1.28	12.08	1.3	4	1.23	7.2	1.2	2%	-4%
	BHW3	Au LG	294	0.34	1.26	0.4	2	0.34	1.0	0.4	1%	0%
	BHW4	Au LG	132	0.31	1.46	0.6	1	0.31	1.4	0.6	1%	0%
	BHW5	Au HG	310	0.98	10.12	0.9	2	0.97	5.0	0.7	1%	-2%
	BHW9	Ag	339	37	364	1.0	2	36	207	0.9	1%	-2%
Batu Jugang	BJ7	Ag	343	39	685	1.6	6	37	275	1.3	2%	-6%
Batu Mas	BM1	Au LG	1521	0.35	6.40	0.7	2	0.34	1.7	0.5	0%	-1%
		Cu	719	0.20	5.80	1.9	8	0.18	1.3	1.3	1%	-8%
		Pb	719	1.29	10.00	0.9	8	1.28	6.4	0.9	1%	-1%
		Zn	719	0.89	9.74	1.3	8	0.86	5.6	1.2	1%	-3%
	BM2	Au LG	94	0.37	6.58	1.9	1	0.34	4.3	1.4	1%	-7%
		Cu	93	0.11	0.69	1.2	1	0.11	0.5	1.1	1%	-2%
		Pb	89	1.26	5.93	0.8	1	1.25	4.9	0.7	1%	-1%
		Zn	89	1.27	6.77	1.0	2	1.25	5.9	1.0	2%	-1%
	BM3	Au LG	35	0.34	1.57	0.8	1	0.33	1.3	0.7	3%	-2%
	BM5	Au HG	713	1.78	20.18	1.2	8	1.74	10.6	1.1	1%	-2%
	BM9	Ag	1338	42	529	1.4	21	40	243	1.2	2%	-4%
Batu Mas Deeps	BMD1	Cu	298	0.38	3.83	1.5	14	0.36	2.19	1.3	5%	-5%
		Pb	298	2.42	44.18	2.0	8	2.27	21.4	1.7	3%	-6%
		Zn	298	2.77	31.51	1.7	8	2.69	21.3	1.6	3%	-3%
	BMD2	Cu	32	0.19	0.62	0.8	1	0.19	0.6	0.8	3%	0%
		Pb	32	2.03	7.74	1.1	1	2.03	7.7	1.1	3%	0%
Batu Perak	BP1	Au LG	1263	0.32	4.08	0.8	13	0.31	1.1	0.5	1%	-4%
_		Cu	987	0.13	1.85	1.4	15	0.12	0.7	1.1	2%	-6%
		Zn	987	1.41	12.05	1.0	10	1.39	6.9	0.9	1%	-1%
		Pb	987	1.26	12.24	1.0	15	1.23	5.6	0.9	2%	-2%
	BP5	Aq	741	46	1726	1.9	ני. א	44	362	1.3	1%	-6%
	BP5	Au HG	600	1.07	9.32	0.8	6	1.06	4.6	0.8	1%	-1%
Batu Putih	BP7	Ag	299	41	415	1.2	3	40	236	1.1	1%	-3%

Table 5: Basic Statistics by Domain and detailed grade capping statistics

Deposit	Domain	Element	Gold	Silver	Copper	Lead	Zinc
Batu Mas	BM1	Au LG (Cu.Pb.An)	1.7	240	1.3	6.4	5.6
	BM2	Au LG (Cu.Pb.An)	4.3	240	0.5	5	6
	BM3	Au LG	1.3	240	NA	NA	NA
	BM5	Au HG	10.5	240	NA	NA	NA
	BM9	Ag HG	NA	240	NA	NA	NA
	BMD1	Cu.Pb.Zn	NA	NA	2.5	21.4	19
	BMD2	Cu.Pb.Zn	NA	NA	0.6	7.7	6.5
	BMD9	Ag HG	NA	240	NA	NA	NA
Batu Hitam	BH1	Au LG (Cu.Pb.An)	1.1	210	0.89	5.3	3.5
	BH2	Au LG (Cu.Pb.An)	1.1	210	0.6	4.5	4
	BH3	Au LG	0.9	210	210 NA		NA
	BH5	Au HG	7.1	210	210 NA		NA
	BH9	Ag HG	NA	210	NA	NA	NA
Batu Hitam-	BHW1	Au LG (Cu.Pb.An)	2.1	200	0.87	7.3	5.1
vvest	BHW2	Au LG (Cu.Pb.An)	1	200	1.6	8.8	7.1
	BHW3	Au LG	1.1	200	NA	NA	NA
	BHW4	Au LG	1.4	200	NA	NA	NA
	BHW5	Au HG	5	200	NA	NA	NA
	BHW9	Ag HG	NA	200	NA	NA	NA
Batu Jugang	BJ7	Ag	NA	275	NA	NA	NA
Batu Perak	BP1	Au LG (Cu.Pb.An)	1.1	235	0.72	5.6	6.9
	BP5	Au HG	4.5	235	NA	NA	NA
	BP9	Ag HG	NA	360	NA	NA	NA
Batu Putih	BP7	Ag	NA	235	NA	NA	NA

Table 6: Summary Grade Caps applied to domains

								Variogram model parameters (spherical)									
Deposit	Element		Search Ellips	se Parameters				Nugget		Structure 1				Structure 2			
		Search Distance (m)	Major:Semi	Major:Minor	Bearing	Plunge	Dip		Nugget%	Sill	Range	Major: Semi	Major: Minor	Sill	Range	Major: Semi	Major: Minor
Batu Mas	Au HG	52	1	2	160	0	0	0.85	15%	4.675	52	1	2			1	2
	Au LG	85	1.75	2.25	50	15	-10	0.0125	38%	0.02	85	1.75	2.25			1.75	2.25
	Ag LG	65	1.15	2	200	-10	0	1000	41%	750	37	1.15	2	705	65	1.15	2
	Ag HG	190	1.3	2	200	-10	20	28	46%	20	97	1.3	2	13.5	190	1.3	2
	Cu, Pb, Zn	120	1.5	2.25	75	5	0	0.4	41%	0.57	120	1.5	2.25			1.5	2.25
Batu Hitam	Au HG	120	1.5	2.5	110	-6	0	0.05	5%	0.45	50	1.5	2.5	0.43	120	1.5	2.5
	Au LG	95	2	3	110	-6	0	0.0045	26%	0.0025	30.5	2	3	0.0105	95	2	3
	Ag HG	165	1.5	3	110	-6	0	375	23%	500	56	1.5	3	760	165	1.5	3
	Ag LG	220	2.25	5	110	-6	0	3	1%	66	96	2.25	5	160	220	2.25	5
	Cu, Pb, Zn	92	1	1.7	0	-10	0	0.06	9%	0.6	92	1	1.7			1	1.7
Batu Hitam West	Au HG	120	1.5	2.5	110	-6	0	0.05	5%	0.45	50	1.5	2.5	0.43	120	1.5	2.5
	Au LG	90	1	2	70	5	-10	0.001	5%	0.0092	50	1	2	0.0107	90	1	2
Deposit E Batu Mas Au Au Au Au Au Au Ag Cu, Ag Batu Hitam Au Batu Hitam Au Ag Cu, Batu Hitam Au Ag Cu, Batu Hitam West Au Ag Cu, Batu Hitam West Au Ag Cu, Batu Perak Au Ag Cu, Batu Perak Au Ag Cu, Batu Perak Au Ag Ag Batu Putih Ag Batu Jugang Ag	Ag HG	165	1.5	3	110	-6	0	375	23%	500	56	1.5	3	760	165	1.5	3
	Ag LG	110	1.5	1.5	110	-6	-90	8	12%	50	55	1.5	1.5	11	110	1.5	1.5
	Cu, Pb, Zn	100	2	3	260	5	0	0.05	5%	0.065	55	2	3	0.95	100	2	3
Batu Perak	Au HG	135	1.35	2.5	310	5	10	0.05	8%	0.553	135	1.35	2.5			1.35	2.5
	Au LG	140	1.3	2	355	10	0	0.001	4%	0.0117	62.6	1.3	2	0.013	140	1.3	2
	Ag HG	130	1.3	2.75	315	10	0	750	22%	520	112	1.3	2.75	2190	130	1.3	2.75
	Ag LG	225	2	2.75	315	10	0	7	17%	13.5	76	2	2.75	21	225	2	2.75
	Cu, Pb, Zn	130	1.5	2.5	355	10	0	0.4	21%	0.5	75	1.5	2.5	1.04	130	1.5	2.5
Batu Putih	Ag	160	1.65	3.35	0	4	0	700	27%	1880	160	1.65	3.35			1.65	3.35
Batu Jugang	Ag	130	1.3	2.75	315	10	0	750	22%	520	112	1.3	2.75	2190	130	1.3	2.75

Table 7: Estimation Parameters

COMPETENT PERSON'S CONSENT FORM

Pursuant to the requirements of ASX Listing Rules 5.6, 5.22 and 5.24 and Clause 9 of the JORC Code 2012 Edition (Written Consent Statement)

Report Description

Mineral Resource Estimate on the Lakuwahi Polymetallic Deposit, Romang Island, Indonesia. Prepared by Mining Associates Limited for Robust Resources Limited, ("the Report").

I, Ian Andrew Taylor confirm that I am the Competent Person for the Report and:

• I have read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition).

• I am a Competent Person as defined by the JORC Code 2012 Edition, having at least five years' experience that is relevant to the style of mineralisation and type of deposit described in the Report, and to the activity for which I am accepting responsibility.

- I am a Certified Professional Geologist by The Australasian Institute of Mining and Metallurgy
- I have reviewed the Report to which this Consent Statement applies.

I am a consultant working for Mining Associates Pty Ltd, and have been engaged by Robust Resources Limited to prepare the documentation for the Lakuwahi Polymetallic Deposit on which the Report is based, for the period ended 30/06/2014.

I have disclosed to the reporting company the full nature of the relationship between myself and the company, including any issue that could be perceived by investors as a conflict of interest.

I verify that the Report is based on and fairly and accurately reflects in the form and context in which it appears, the information in my supporting documentation relating to Mineral Resources

CONSENT

I consent to the release of the Report and this Consent Statement by the directors of :

Signature of Competent Person:

Ian A Taylor BSc (Hons) MAusIMM(CP)

Signature of Witness:

Kylie Prendergast BSc (Geology) Hons, PhD, MAIG (Sherwood QLD 4075)

Professional Membership: Member of Australian Institute of Mining and Metallurgy

Membership Number: 110090

Date: 24/07/2014