ASX Code: AIV Issued Capital

506,812,672 ordinary shares (AIV) 28,100,000 unlisted options

Market Capitalisation

\$7.60M (30 July 2014, \$0.015)

Directors

Min Yang (Chairman, NED)
Grant Thomas (Managing Director)
Geoff Baker (NED)
Craig James (Company Secretary)

About ActivEX

ActivEX Limited is a Brisbane based mineral exploration company committed to the acquisition, identification and delineation of new resource projects through active exploration.

The ActivEX portfolio is focussed on copper and gold projects, with substantial tenement packages in north and southeast Queensland and in the Cloncurry district of northwest Queensland.

The Company also has an advanced potash project in Western Australia where it is investigating optimal leaching methods for extraction and production of potash and by-products.

Phone +61 (07) 3236 4188 Facsimile +61 (07) 3236 4288

117 Quay Street BRISBANE QLD 4000 PO Box 1533 MILTON QLD 4064

admin@activex.com.au www.activex.com.au

ABN 11 113 452 896

SUPERGENE COPPER TARGETS IDENTIFIED AT ESK COPPER AND GOLD PROJECT

Highlights

- Extensive portable XRF geochemical surveys completed over priority targets in the Booubyjan tenement, confirming historical zones of copper anomalism and identifying a new high priority target called 'Fountain'.
- Booubyjan is a porphyry copper-gold system with significant near surface supergene copper-gold enrichment open pit target.
- Previous ActivEX and historic work programs; including soil sampling, geological mapping, geophysics and drilling has identified priority supergene targets at White Horse, Kiwi, Bath and Hinds.
- Booubyjan prospects have significant synergies with the newly acquired Coalstoun supergene copper-gold prospect, approximately 35km northwest (Figure 1).
- Drilling to define the extent of supergene mineralisation is planned to commence in the next quarter.

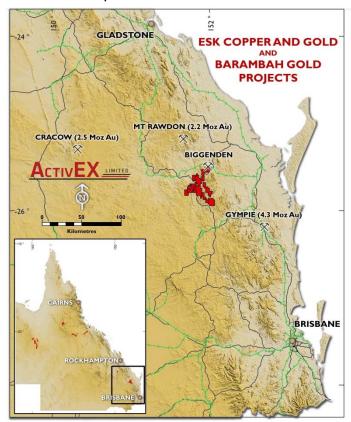


Figure 1. ActivEX Limited Esk Copper and Gold Project location (newly acquired Coalstoun EPM 14079 and Barambah Gold Project also shown)

ActivEX Limited ('ActivEX' or the 'Company') is pleased to announce that extensive portable X-Ray Fluorescence (pXRF) soil geochemical surveys have been completed over priority copper-gold targets in the Booubyjan tenement EPM 14476 – Esk Copper and Gold Project (Figures 1 and 2).

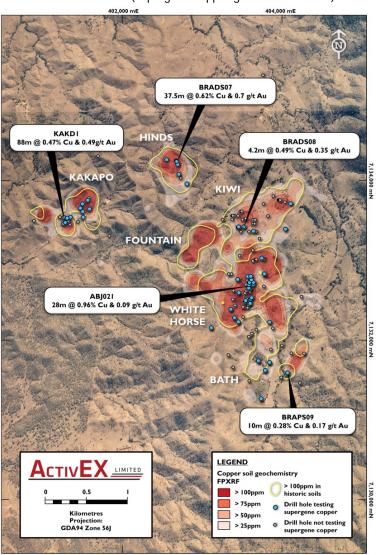
Portable XRF surveying has comprised a total of 2,915 readings acquired on east-west traverses spaced 50-200m with a nominal reading interval of 50-200m. In all, the surveys have covered 145.75 line km. Geological mapping has also been completed over much of the survey areas.

These surveys have confirmed and tightly defined six major zones of copper anomalism that coincide with historic soil sampling. A previously untested high priority target named 'Fountain' has been defined which has a coherent surface expression of over 100ppm Cu (maximum pXRF value of 963ppm Cu, maximum assay value of 1,420ppm Cu, Figure 2).

Regional pXRF surveys are ongoing with the aim of discovering and defining further anomalous copper zones.

A thorough review of historic drilling data by ActivEX has indicated that the majority of supergene targets remain untested by drilling (e.g. limited drilling extent and/or assaying within supergene zones, Figure 2 and Table 1).

Additional sampling of historic drill core will be carried out to more fully determine supergene copper and gold zones.


In May 2012, ActivEX completed drilling programs designed to test near surface copper-gold mineralisation (refer to ASX announcement 18 June 2012) (Figure 2). Several drill holes intersected intervals of copper mineralisation associated with a well-developed supergene zone including:

- 28m @ 0.96% Cu from 29m, ABJ021
- 26m @ 0.85% Cu from 21m, ABJ020
- 15m @ 1.1% Cu from 29m, ABJ023
- 13m @ 1.0% Cu from 27m, ABJ025

The Booubyjan prospects potentially have significant synergies with the newly acquired Coalstoun supergene copper-gold prospect, located approximately 35km northwest (refer to ASX announcement 30 June 2014) (Figure 1).

Drilling to define the extent of supergene mineralisation is planned to commence in the next quarter, depending on site access and permitting.

At the completion of these drilling programs, the Company plans to conduct resource estimation studies with the aim of establishing a maiden JORC Resource (supergene copper-gold mineralisation).

Figure 2. ActivEX Limited Booubyjan prospect priority targets defined by portable XRF sampling programs (also shown is historical soil sampling results and drill holes that have partially tested supergene copper zones)

For further information contact: Mr Grant Thomas, Managing Director or Mr Craig James, Company Secretary

Table 1. Drill hole location information

Hole ID	MGA East	MGA North	RL (m)	End of Hole (m)	EOH type	Dip	Azi (MGA)	Azi (Mag)	Company	Prospect
ABJ001	403613.0	7133091.0	302	142.2	Diamond	-60	270	260	ActivEX	Kiwi
ABJ002	404172.0	7131652.0	324	108.0	RC Percussion	-60	90	80	ActivEX	Bath
ABJ003	403228.0	7132646.0	343	181.3	Diamond	-70	270	260	ActivEX	White Horse
ABJ004	403224.0	7131632.0	373	140.5	Diamond	-70	90	80	ActivEX	Bath
ABJ005	403518.0	7131900.0	350	119.5	Diamond	-70	90	80	ActivEX	Bath
ABJ006	401240.0	7133268.0	270	99.0	RC Percussion	-59.5	230	220	ActivEX	Kakapo
ABJ007	400790.0	7133315.0	301	84.0	RC Percussion	-70	90	80	ActivEX	Kakapo
ABJ008	401734.0	7133126.0	277	108.0	RC Percussion	-70	90	80	ActivEX	Kakapo
ABJ009	404012.0	7131655.0	305	368.5	Diamond	-60	90	80	ActivEX	Bath
ABJ010	403353.0	7133240.0	314	402.0	Diamond	-65	85	75	ActivEX	Kiwi
ABJ011	401341.0	7133301.0	230	299.2	Diamond	-60	240	230	ActivEX	Kakapo
ABJ012	403675.0	7132650.0	314	316.8	Diamond	-55	90	80	ActivEX	White Horse
ABJ013	403265.0	7132647.0	340	720.0	Diamond	-70	160	150	ActivEX	Bath/White Horse
ABJ014	403278.0	7132329.0	348	923.8	Diamond	-70	115	105	ActivEX	New deep hole
ABJ015	404120.0	7131283.0	316	440.7	Diamond	-60	315	305	ActivEX	Highmag
ABJ017	401115.0	7133359.0	257	348.0	Diamond	-65	240	230	ActivEX	Kakapo
ABJ018	401476.0	7133601.0	302	249.3	Diamond	-60	10	0	ActivEX	Tentacles
ABJ019	403514.0	7132351.0	331	55.0	RC Percussion	-61.5	270	260	ActivEX	White Horse
ABJ020	403497.0	7132279.0	287	103.0	RC Percussion	-60.6	270	260	ActivEX	White Horse
ABJ021	403482.0	7132514.0	300	91.0	RC Percussion	-61.2	270	260	ActivEX	White Horse
ABJ022	403536.0	7132519.0	281	61.0	RC Percussion	-59.4	270	260	ActivEX	White Horse
ABJ023	403490.0	7132542.0	297	121.0	RC Percussion	-61.3	270	260	ActivEX	White Horse
ABJ024	403539.0	7132545.0	343	61.0	RC Percussion	-60.7	270	260	ActivEX	White Horse
ABJ025	403513.0	7132575.0	285	73.0	RC Percussion	-60.8	270	260	ActivEX	White Horse
ABJ026	403467.0	7132618.0	301	55.0	RC Percussion	-60.7	270	260	ActivEX	White Horse
ABJ027	403504.0	7132620.0	271	34.0	RC Percussion	-60.1	270	260	ActivEX	White Horse
ABJ028	401180.0	7133294.0	201	127.0	RC Percussion	-55.6	230	220	ActivEX	Kakapo
ABJ029	401166.0	7133357.0	262	163.0	RC Percussion	-61.2	230	220	ActivEX	Kakapo
ABJ030	401464.0	7133573.0	302	223.0	RC Percussion	-60.0	190	180	ActivEX	Kakapo
ABJ031	401396.0	7133526.0	274	193.0	RC Percussion	-56.3	25	15	ActivEX	Kakapo
ABJ032	401205.0	7133349.0	261	247.0	RC Percussion	-76.7	230	220	ActivEX	Kakapo
BLBD1	401593.4	7134128.3	320	276.4	Diamond	-55	85	75	MIM	The Blob
BOAT1	403402.9	7133233.0	330	30.0	Open Percussion	-52	90	80	Cyprus	Kiwi
BOAT10	403529.4	7133279.0	321	40.0	Open Percussion	-51	90	80	Cyprus	Kiwi
BOAT11	403551.4	7133278.0	318	40.0	Open Percussion	-50	90	80	Cyprus	Kiwi
BOAT12	403535.1	7133327.0	320	42.0	Open Percussion	-52	90	80	Cyprus	Kiwi
BOAT13	403560.1	7133327.0	318	18.0	Open Percussion	-51	90	80	Cyprus	Kiwi
BOAT14	403720.6	7133375.0	307	22.0	Open Percussion	-49	90	80	Cyprus	Kiwi
BOAT15	403664.4	7133526.0	312	40.0	Open Percussion	-49	90	80	Cyprus	Kiwi
BOAT16	403851.9	7133573.0	305	16.0	Open Percussion	-52	90	80	Cyprus	Kiwi
BOAT17	403862.0	7133573.0	303	16.0	Open Percussion	-51	90	80	Cyprus	Kiwi
BOAT18	403871.5	7133573.0	301	18.0	Open Percussion	-50	90	80	Cyprus	Kiwi
BOAT19	403786.7	7133624.0	304	40.0	Open Percussion	-49	90	80	Cyprus	Kiwi
BOAT2	403423.3	7133232.0	326	40.0	Open Percussion	-50	90	80	Cyprus	Kiwi
BOAT20	403381.3	7133179.0	336	40.0	Open Percussion	-50	90	80	Cyprus	Kiwi

Hole ID	MGA East	MGA North	RL (m)	End of Hole (m)	EOH type	Dip	Azi (MGA)	Azi (Mag)	Company	Prospect
BOAT21	403481.8	7133178.0	318	38.0	Open Percussion	-49	90	80	Cyprus	Kiwi
BOAT22	403577.1	7133177.0	312	20.0	Open Percussion	-50	90	80	Cyprus	Kiwi
BOAT23	403530.1	7132946.0	326	30.0	Open Percussion	-51	90	80	Cyprus	Kiwi
BOAT24	403562.1	7132829.0	315	18.0	Open Percussion	-49	90	80	Cyprus	Kiwi
BOAT25	403572.1	7132829.0	314	26.0	Open Percussion	-50.5	90	80	Cyprus	Kiwi
BOAT26	403673.2	7132827.0	315	26.0	Open Percussion	-50	90	80	Cyprus	Kiwi
BOAT27	403401.4	7133329.0	328	30.0	Open Percussion	-49	90	80	Cyprus	Kiwi
BOAT3	403374.9	7133431.0	327	24.0	Open Percussion	-49	90	80	Cyprus	Kiwi
BOAT4	403391.6	7133432.0	326	30.0	Open Percussion	-51	90	80	Cyprus	Kiwi
BOAT5	403269.8	7133377.0	320	10.0	Open Percussion	-49	90	80	Cyprus	Kiwi
BOAT6	403278.8	7133377.0	324	7.0	Open Percussion	-49	90	80	Cyprus	Kiwi
BOAT6A	403282.3	7133377.0	324	6.0	Open Percussion	-48	90	80	Cyprus	Kiwi
BOAT7	403300.6	7133377.0	328	15.0	Open Percussion	-49	90	80	Cyprus	Kiwi
BOAT8	403346.2	7133377.0	332	40.0	Open Percussion	-49	90	80	Cyprus	Kiwi
BOAT9	403271.7	7133330.0	318	26.0	Open Percussion	-51	90	80	Cyprus	Kiwi
BRADS07	402573.0	7134067.0	300	90.6	Diamond	-90	10.5	0.5	North	Hinds
BRADS08	403419.0	7133241.0	334	108.4	Diamond	-90	10.5	0.5	North	Kiwi
BRADS26	401210.0	7133315.0	270	210.0	Diamond	-60	320.5	310.5	North	Kakapo
BRAPD10	403300.0	7132100.0	336	85.3	Diamond	-60	325.5	315.5	North	White Horse
BRAPD12	403470.0	7132250.0	346	95.4	Diamond	-60	315.5	305.5	North	White Horse
BRAPD22	403933.0	7133546.0	297	66.0	Diamond	-60	280.5	270.5	North	Kiwi
BRAPD25	401486.0	7133463.0	270	186.0	Diamond	-50	0.5	-9.5	North	Kakapo
BRAPS01	403659.0	7135136.0	272	36.0	Diamond	-90	10.5	0.5	North	Water bore
BRAPS02	402589.0	7134023.0	300	147.0	Diamond	-58	320.5	310.5	North	Hinds
BRAPS03	403938.0	7133210.0	318	114.0	Diamond	-59	120.5	110.5	North	Kiwi
BRAPS04	403642.0	7132847.0	315	150.0	Diamond	-58	160.5	150.5	North	Kiwi
BRAPS05	403346.0	7133231.0	334	150.0	Diamond	-57	120.5	110.5	North	Kiwi
BRAPS06	403536.0	7133185.0	313	150.0	Diamond	-59	340.5	330.5	North	Kiwi
BRAPS09	403965.0	7131410.0	321	84.0	Diamond	-60	280.5	270.5	North	Bath
BRAPS11	403435.0	7132300.0	354	120.0	Diamond	-60	315.5	305.5	North	White Horse
BRAPS13	403493.0	7132465.0	353	66.0	Diamond	-60	320.5	310.5	North	White Horse
BRAPS14	403479.0	7132484.0	355	82.2	Diamond	-60	320.5	310.5	North	White Horse
BRAPS15	403444.0	7132515.0	352	48.0	Diamond	-90	10.5	0.5	North	White Horse
BRAPS16	403686.0	7131441.0	315	125.0	Diamond	-60	320.5	310.5	North	Bath
BRAPS17	403600.0	7131560.0	312	96.0	Diamond	-60	320.5	310.5	North	Bath
BRAPS18	403635.0	7131086.0	325	108.0	Diamond	-60	300.5	290.5	North	Bath
BRAPS19	404140.0	7132364.0	304	60.0	Diamond	-90	10.5	0.5	North	White Horse
BRAPS20	403350.0	7132050.0	325	140.0	Diamond	-60	325.5	315.5	North	White Horse
BRAPS21	404004.0	7133531.0	295	102.0	Diamond	-60	280.5	270.5	North	Kiwi
BRAPS23	402706.0	7133778.0	338	96.0	Diamond	-90	10.5	0.5	North	Hinds
BRAPS24	401722.0	7134282.0	305	42.0	Diamond	-60	100.5	90.5	North	Blob
BRAPS27	401245.0	7133360.0	270	162.0	Diamond	-60	330.5	320.5	North	Kakapo
BRAPS28	401400.0	7133430.0	270	114.0	Diamond	-60	330.5	320.5	North	Kakapo
BRAPS29	401405.0	7133360.0	270	133.0	Diamond	-60	350.5	340.5	North	Kakapo
BRAPS30	403010.0	7131974.0	344	154.0	Diamond	-60	75.5	65.5	North	White Horse
BRAPS31	403740.0	7132046.0	320	124.0	Diamond	-70	20.5	10.5	North	White Horse
BRAPS32	403740.0	7131540.0	312	148.0	Diamond	-60	310.5	300.5	North	Bath

Hole ID	MGA East	MGA North	RL (m)	End of Hole (m)	EOH type	Dip	Azi (MGA)	Azi (Mag)	Company	Prospect
CR0001	402579.0	7134059.0	298	90.0	RC Percussion	-60	320	310	Battle Mountain	Hinds
CR0002	402452.0	7134083.0	305	90.0	RC Percussion	-60	58	48	Battle Mountain	Hinds
CR0003	402603.0	7133898.0	306	95.0	RC Percussion	-60	316	306	Battle Mountain	Hinds
CR0004	402617.0	7133886.0	309	55.0	RC Percussion	-60	316	306	Battle Mountain	Hinds
CR0005	402626.0	7133850.0	310	85.0	RC Percussion	-60	240	230	Battle Mountain	Hinds
CR0006	403495.3	7132432.0	355	62.0	RC Percussion	-60	270	260	Battle Mountain	White Horse
CR0007	403465.7	7132432.4	354	60.0	RC Percussion	-60	270	260	Battle Mountain	White Horse
CR0008	403442.6	7132431.6	350	53.0	RC Percussion	-60	270	260	Battle Mountain	White Horse
CR0009	403504.2	7132332.7	353	85.0	RC Percussion	-60	270	260	Battle Mountain	White Horse
CR0010	403453.9	7132333.3	353	107.0	RC Percussion	-55	270	260	Battle Mountain	White Horse
CR0011	403496.1	7132421.4	354	55.0	RC Percussion	-60	270	260	Battle Mountain	White Horse
CR0012	403463.2	7132226.0	344	68.0	RC Percussion	-60	268	258	Battle Mountain	White Horse
CR0013	403481.0	7131862.0	344	60.0	RC Percussion	-60	48	38	Battle Mountain	Bath
E1	403895.0	7131752.0	304	91.4	Open Percussion	-90	0	0	Eagle Corp	Bath
E10	403307.0	7132254.0	340	68.6	Open Percussion	-90	0	0	Eagle Corp	White Horse
E2	403781.0	7131967.0	317	73.2	Open Percussion	-90	0	0	Eagle Corp	White Horse
E3	403441.0	7133343.0	326	121.9	Open Percussion	-90	0	0	Eagle Corp	Kiwi
E4	403532.0	7132812.0	322	59.4	Open Percussion	-90	0	0	Eagle Corp	Kiwi
E5	403152.0	7133328.0	321	38.1	Open Percussion	-90	0	0	Eagle Corp	Kiwi
E6	403757.0	7131703.0	324	76.2	Open Percussion	-90	0	0	Eagle Corp	Bath
E7	403886.0	7131350.0	311	51.8	Open Percussion	-90	0	0	Eagle Corp	Bath
E8	403284.0	7131477.0	352	30.5	Open Percussion	-90	0	0	Eagle Corp	Bath
E9	403409.0	7132109.0	323	53.3	Open Percussion	-90	0	0	Eagle Corp	White Horse
ES1	403574.0	7131950.0	343	43.0	Open Percussion	-90	0	0	Esso	Bath
KAKD1	401205.7	7133344.4	270	213.4	Diamond	-60	240	230	MIM	Kakapo
KAKD2	401370.5	7133474.7	285	186.4	Diamond	-50	35	25	MIM	Kakapo
KAKP3	401160.8	7133279.5	270	120.0	RC Percussion	-55	130	120	MIM	Kakapo
RC93CR1	403490.0	7132315.0	330	12.0	RC Percussion	-58	349	339	CRAE	White Horse
RC93CR2	403440.0	7132316.0	346	99.8	RC Percussion	-59	255	245	CRAE	White Horse
SAM1	403460.0	7132571.0	335	33.0	Diamond	-90	0	0	Samantha	White Horse
SAM2	403669.0	7132492.0	330	55.0	RC Percussion	-90	0	0	Samantha	White Horse
SAM3	403480.0	7132473.0	353	60.0	RC Percussion	-90	0	0	Samantha	White Horse
sPHD1	403485.0	7131308.0	330	47.0	Open Percussion	-90	0	0	Anaconda	Bath
sPHD2	403431.0	7132406.0	350	60.0	Open Percussion	-90	0	0	Anaconda	White Horse
sPHD3	403407.0	7132235.0	344	30.0	Open Percussion	-90	0	0	Anaconda	White Horse
sPHD4	403679.0	7132630.0	320	42.0	Open Percussion	-90	0	0	Anaconda	Kiwi
sPHD5	403486.0	7132543.0	345	51.0	Open Percussion	-90	0	0	Anaconda	White Horse
sPHD6	403673.0	7132837.0	313	40.0	Open Percussion	-90	0	0	Anaconda	Kiwi
WHD1	403355.6	7132414.4	343	300.4	Diamond	-60	90	80	MIM	White Horse
WHD2	403255.4	7132207.6	347	300.5	Diamond	-60	90	80	MIM	White Horse
WHD3a	403340.6	7132580.4	330	291.4	Diamond	-60	90	80	MIM	White Horse

Appendix 1

Declarations under JORC 2012 and JORC Tables

The information in this report that relates to exploration results is based on information compiled by Mr G. Thomas, who is a Member of the Australasian Institute of Mining and Metallurgy (MAusIMM) and a Member of the Australian Institute of Geoscientists (MAIG) and Ms J. Hugenholtz, who is a Member of the Australian Institute of Geoscientists (MAIG). Both Mr Thomas (Managing Director) and Ms Hugenholtz (Exploration Manager) are full-time employees of ActivEX Limited and have sufficient experience relevant to the styles of mineralisation and types of deposit under consideration and the activities being undertaken to qualify as a Competent Person as defined by the 2012 Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012).

Mr Thomas and Ms Hugenholtz consent to the inclusion of their names in this report and to the issue of this report in the form and context in which it appears. The following Tables detail sampling techniques, data management and reporting criteria according to the JORC Code (2012).

JORC Table 1 – Esk Copper and Gold Project – XRF Soil Sampling

Section 1 - Sampling Techniques and Data - EPM 14476

Criteria	Explanation
Sampling techniques	 A handheld XRF analyser was used to obtain soil analyses. Samples were prepared by scuffing a 10cm² area to remove any light vegetation and immediate top soil. The instrument was then used to analyse the area directly. The analyser window is checked for any foreign contaminant between samples.
Location of data points	Location by hand held Garmin GPS device.Southeast Queensland - grid system MGA94, Zone 56.
Data spacing and distribution	 Samples taken at variable spacing between 50 to 200 metres, on lines 50 to 200 metres apart, no compositing of samples.
Quality of assay data and laboratory tests	 Portable XRF sampling has been carried out using a Niton XL3T-500 handheld XRF analyser on 'Soil' mode, using three filters, each with 30 second duration to give a total analysing time of 90 seconds.
Audits or reviews	 The Niton XRF analyser is checked against five or more standards of varying compositions, prior to, and after operation each working day. The instrument is calibrated annually.

Section 2 – Reporting of Exploration Results – EPM 14476

Criteria	Explanation
Mineral tenement and land tenure status	 EPM 14476, Booubyjan, forms part of the ActivEX Esk Copper and Gold Project. EPM 14476 is held by ActivEX Limited (100%) – see Figure 1 for location. EPM 14476 is located on Freehold Land covered by several pastoral enterprises. A Native Title Claim Application (QUD93/2012) was lodged by the Wakka Wakka People #5 on 10 Feb 2012 and covers almost the entire tenement area. There are no registered National Parks in the prospect area.
Exploration done by other parties	 Previous exploration has been dominantly carried out by Esso, CRAE, Cyprus, North and MIM. Work included geophysics, mapping, rock chip, soil and stream sediment sampling, trenching and drilling. Previous exploration completed by ActivEX Limited from 2005 is reported in previous ASX Releases under JORC 2004 standards.
Geology	 EPM 14476 sits within the Esk Basin, a tectonostratigraphic member of the New England Orogen. The Esk Basin is a large extensional basin/trough consisting of marine, volcanic and volcaniclastic units of Early Permian to Early Triassic age. It is host to a variety of mineral deposits, including the Barambah Au-Ag deposit, Coalstoun Cu-Au Porphyry, Ban Ban Zn Skarn and Booubyjan Cu-Au Porphyry in its northern extent. EPM 14476 consists of six surficial areas of copper anomalism, caused by known porphyry mineralisation at depth.
Further work	Refer to body of report for further work plans.

JORC Table 1 – Esk Copper and Gold Project – Historic Soil Sampling

Section 1 - Sampling Techniques and Data - EPM 14476

Criteria	Explanation
Sampling techniques	Samples were prepared from a bulk soil sample, collected 20cm below surface and sieved to -2mm.
Location of data points	 Location by a combination of differential GPS (DGSP) device and tape and compass. Southeast Queensland - grid system AMG84, Zone 56; converted by ActivEX staff to MGA94, Zone 56.
Data spacing and distribution	 Samples taken at variable spacings between 50 metres spacings on lines 100 to 200 metres apart, no compositing of samples.
Quality of assay data and laboratory tests	 All samples were assayed by ALS using method IC587 (ICP-AES, multi-acid digest) for multi-element analysis and PM204 (AAS, aqua regia digest).
	Lab duplicates were taken during analysis and have been checked by ActivEX staff for accuracy.
Audits or reviews	 Various different sample depths and sieve fractions were tested to determine the best method of sample preparation.
	All results have been visually checked for signs of contamination.
	 All results have been compared with areas exhibiting visible signs of mineralisation to determine the realistic nature of the results.

Section 2 - Reporting of Exploration Results - EPM 14476

(refer to JORC Table 1 – Esk Copper and Gold Project – XRF Soil Sampling)

JORC Table 1 - Esk Copper and Gold Project - ActivEX Drilling

Section 1 - Sampling Techniques and Data - EPM 14476

Criteria	Explanation
Sampling techniques	 All RC (reverse circulation) drill samples were collected at one metre intervals. RC drill samples were riffle split using a riffle splitter mounted on the drill rig, with 25% of the metre collected in a calico bag (ready to be sent to the laboratory, if deemed warranted) and 75% of the metre collected in a green plastic bag. Diamond core drill samples were sampled at various intervals depending on the geology of the core being sampled. Diamond core drill samples were variably halved or quartered depending on the geology and how much material was required for assay.
Drilling techniques	A combination of RC and diamond drilling techniques have been utilised by ActivEX during numerous drill campaigns spanning from 2006 to 2012.
Drill sample recovery	 For RC samples, recoveries were initially visually estimated based on the size of the green bags and recorded as a percentage. RC green bag splits collected during the 2012 drill program, were weighed to provide a more accurate estimate of recovery. Recoveries were generally good. For core samples, recovery was measured by the geologist using a tape measure.
Logging	 Drill chip and core samples were geologically logged on on-site by geologists Josh Leigh, Jane Harvey, P. Watson, Doug Young and Juli Hugenholtz. Every metre drilled was geologically logged to a level of detail to support appropriate future Mineral Resource estimation.
Sub-sampling techniques and sample preparation	 XRF analysis was conducted on all drill samples obtained during the 2012 drill program, using a Niton XL3t handheld XRF in 'Soil' mode, using three filters, each with a 30 second duration to give a total analysing time of 90 seconds. Samples to be sent for laboratory analysis were determined by geological methods (logging) and/or on-site handheld XRF (Niton) analysis as above.

	 Assays were conducted by ALS Global, Brisbane laboratory, using standard procedures and standard laboratory checks (multi-element methods ME-ICP61/ME-ICP61s or ME-ICP41s and Au-AA25 for gold assay). The nature and quality of sample preparation is considered appropriate for the mineralisation style. The samples sizes are appropriate for the material being sampled.
Quality of assay data and laboratory tests	 All intersections reported herein are laboratory assay intervals. Lab duplicates, standards and blanks were analysed during sample analysis as part of standard operating procedures. The results have been checked by ActivEX staff for accuracy. There were no in house quality control measures prior to the 2012 drill program (ABJ019 to ABJ032). Quality control measures for laboratory analysed samples collected during the 2012 drill program consisted of: Sample selection from each hole was sent to laboratory as a separate batch. One blank sample (OREAS 22b - quartz sand + 0.5% FeOx) per hole. One head grade sample (OREAS 152a – porphyry ore) per hole. The nature and quality of the assaying and laboratory procedures used is considered appropriate for the mineralisation style.
Verification of sampling and assaying	Significant intersections were verified by Exploration Manager Juli Hugenholtz.
Location of data points	 Drill hole collars were located by hand held Garmin GPS device. Down hole surveys prior to 2012 were taken approximately every 50 to 100m. Drill holes surveyed during 2012 were completed using an isGyro, allowing downhole surveying every 5m. Co-ordinates are recorded in grid system MGA94, Zone 56.
Data spacing and distribution	Drill hole spacing to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) is unknown at this stage.
Orientation of data in relation to geological structure	 Drill holes were designed to intersect interpreted trends in geological +/- geochemical +/- geophysical targets. Drilling orientation and the orientation of key mineralised structures is considered to not have introduced a sampling bias.
Sample security	 Sample bags were packed in batches into polyweave bags for transport. Samples were transported to laboratory in Brisbane via courier and by ActivEX personnel.
Audits or reviews	 The Niton XRF analyser is calibrated annually. The Niton XRF analyser is checked against five or more standards of varying compositions, prior to, and after operation each working day. Standard laboratory procedure for laboratory samples. In-house review of QAQC data for laboratory samples. Non-mineralised drill holes which are less than 100m deep and/or have not assayed the top 100m have been deemed insufficiently testing supergene mineralisation.

Section 2 - Reporting of Exploration Results – EPM 14476 (refer to JORC Table 1 – Esk Copper and Gold Project – XRF Soil Sampling)

JORC Table 1 – Esk Copper and Gold Project – Historic Drilling

Section 1 - Sampling Techniques and Data - EPM 14476

Criteria	Explanation
Sampling techniques	 Percussion drill samples from previous explorers, CRAE, Cyprus, Battle Mountain, North (except for BRAPS01: 1m samples) and MIM, consisted of 2m composites. Percussion drill samples from previous explorers, Anaconda and Samantha, consisted of 1m samples.
	 Percussion drilling sampling techniques for all previous explorers is unknown (i.e. splitting, compositing). Diamond core samples were sampled at various intervals by Samantha, CRAE, North and MIM.

	Whether core samples were split or cut and by to what extent (i.e. quarters, halves etc.) is unknown for all previous explorers).
Drilling techniques	 Reverse circulation (RC) drilling was carried out by Esso, Anaconda and Battle Mountain. Both RC and diamond core drilling was carried out by Samantha, CRAE, North and MIM. Open percussion drilling was carried out by Cyprus and Eagle.
Drill sample recovery	 RC recoveries were recorded by North and were good overall. Core recoveries were recorded by North and MIM and were good overall. All other previous explorers did not document their recoveries.
Logging	 Drill chip and core samples were geologically logged (geologists – Esso: unknown; CRAE: M. Male and J. Marinelli; Eagle: J. Garbon, C.L. Fair and R. Cranstoun; Anaconda: unknown; Samantha: R.A. Crayzer; Cyrus: R. Hee; Battle Mountain: unknown; North: Greg Collins and M. Carey; MIM: unknown). Detailed geological logs were carried out by North and MIM. Geological logs carried out by Eagle, CRAE and Samantha are moderate in detail. Geological logs carried out by Esso, Anaconda, Cyprus and Battle Mountain, lack detail.
Sub-sampling techniques and sample preparation	 For Cyprus, Battle Mountain and North, assays were conducted by ALS (Cyprus: unknown method; Battle Mountain: fire assay [unknown lab code]; North: PM209 and IC586 or IC587 or IC588 with A101 [reassay]). For Eagle, assays were conducted by Analytical Services and/or Arnadel (unknown method). For Anaconda, assays were conducted by Kalgoorlie Laboratory ("HF attack plasma" [unknown lab code]). For CRAE, assays were conducted by Analabs (unknown method). For Samantha and MIM, the lab and assay method are unknown.
Quality of assay data and aboratory tests	 All intersections reported herein are laboratory assay intervals. A two metre composite duplicate was taken every 20 to 40 metres by North in all holes (except BRAPS01, BRADS07, BRADS08, BRAPS09, BRAPD10, BRAPS18, BRAPS19 and BRADS26). Duplicate assays have been checked by ActivEX staff for accuracy. In-lab QAQC for North assays consisted of duplicates which have been checked by ActivEX staff for accuracy. No other previous explorers conducted in-house QAQC.
Verification of sampling and assaying	Significant intersections were verified by Exploration Manager Juli Hugenholtz.
Location of data points	 Drill hole collars, BRAPS01, BRAPS03, BRAPS04, BRAPS05, BRAPS06, BRAPS13, BRAPS14, BRAPS15, BRAPS16, BRAPS18, BRAPS19, BRAPS21, BRAPD22, BRAPS23, BRAPS24 and BRAPD25 (North), were picked up by differential GPS (DGPS). The remaining holes by North were located using map coordinates. It is known how the remaining previous explorers located their drill collars. Coordinates are documented as a combination of AMG and local coordinates which have been converted by ActivEX staff to MGA94. No down hole surveys were taken by previous explorers.
Data spacing and distribution	See Figure 2 for drill holes distribution and Table 1 for coordinates.
Orientation of data in relation to geological structure	Drill holes were designed to intersect interpreted trends in geological and/or geochemical and/or geophysical targets.
Sample security	The security and the method of transport for samples from previous explorers is unknown.
Audits or reviews	 Non-mineralised drill holes which are less than 100m deep and/or have not assayed the top 100m have been deemed insufficiently testing supergene mineralisation.

Section 2 - Reporting of Exploration Results – EPM 14476 (refer to JORC Table 1 – Esk Copper and Gold Project – XRF Soil Sampling)