

ASX ANNOUNCEMENT

January 22, 2014

Maiden Resource Estimate completed for Malcolm Challenger Gold Project – Murrin Murrin

547,000 tonnes averaging 3.12 g/t for 54,875 ounces

JORC 2012 Indicated Resource

Zeta Resources Limited ('Zeta Resources' or 'the Company') is pleased to report that its wholly owned subsidiary, Kumarina Resources Pty Ltd (Kumarina) has completed a maiden resource estimate for the Malcolm Challenger gold project. The uncut resource which is compliant to JORC 2012 standards is classified under the Indicated Category and contains 547,000 tonnes averaging 3.12 grams per tonne for 54,875 ounces based on a 1 g/t cut-off grade.

The resource estimate follows a series of reverse circulation drilling campaigns completed to test mineralisation below and between two historical open pits mines located at the Company's Murrin Murrin project.

Mineralisation is continuous for approximately 1000 metres and has been defined to a depth of 100 metres. The mineralisation is located in a series of lodes that plunge to the south and remain open at depth.

The most recent drilling program has highlighted the potential to extend the resource at depth with 3 metres @ 33.3 g/t intersected at 100 m in hole 13MMRC006 and 3 metres @ 3.6g/t intersected at 91 metres in 13MMRC0005.

The Company is now reviewing the project with respect to its economic potential as a mine and haul operation with processing undertaken at a nearby treatment plant.

Resource Estimate Methodology

The Malcolm Challenger JORC (2012) compliant Mineral Resource was estimated based on RC drill hole data obtained from 295 historical holes (15,917m), and 67 holes (4,634m) drilled by Kumarina Resources in 2012-2013. Hole depths ranged from 10 to 201 metres, (averaging 54 metres) with the majority of holes dipping at approximately 60 degrees and orthogonal to strike.

Mapping of the surface outcrop of the Malcolm Challenger Gold Zone has outlined a number of narrow to moderate quartz /silica sub parallel zones, reflecting the surface expression of intersections observed in the drilling and mined by open pit and historical underground methods. The vast majority of all zones are open at depth and excellent potential to define possible underground resources via additional deeper drilling is apparent.

Zeta Resources Limited ARBN 162 902 481

Registered Office: 19 Par-la- Ville Road, Hamilton HM 11, Bermuda I Tel: + 1 441 295 5678 I www.zetaresources.co Australian Registered Office: Suite 8, 7 The Esplanade, Mt Pleasant, WA 6153, Australia I Tel: +61 8 9316 9100 I Fax: +61 8 9315 5475 The resource extends over 1000 metres of strike length and comprises four sub parallel zones ranging in width from 1-4 metres in average thickness and has been estimated to a vertical extent of 100 metres. A southerly plunge is indicated from the drilling completed to date.

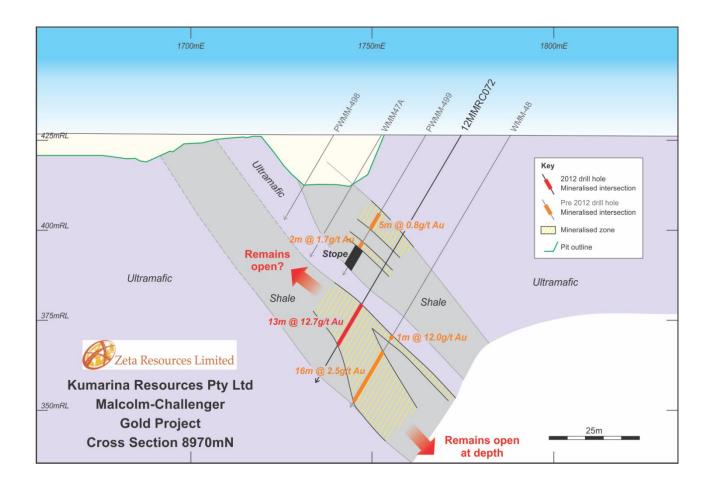
Sectional interpretation at a nominal 0.5 g/t Au cut off was completed with the interpreted zones then wireframed to form coherent shapes. Four individual wireframes were constructed to create the resource model. The grade estimation method was the "inverse distance cubed" of values lying within the validated wireframes (solids) with only the assays constrained within the individual wireframes/solids used for the interpolation. Parent block sizes populating the model were set at 2m (x), 4m (y) and 2m (z), with the sub-cell size down to half of the parent cell size.

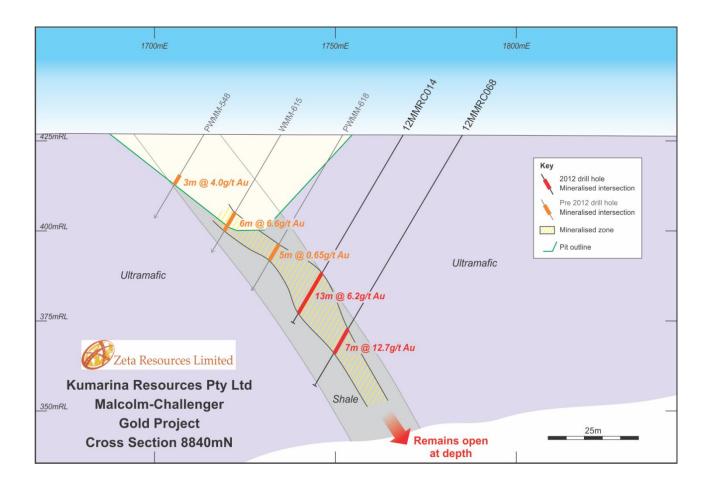
The interpolation process used a search of 40m (strike) x 20m (down dip) x 4m (down hole) to fill the wireframe solids. The azimuth and dip of the search ellipse varied depending on the individual wireframe and were orientated parallel to the mineralised zones. A cut grade of 30 g/t au was also interpolated. An in situ bulk density (ISBD) of 2.60t/bcm for the fresh material and 2.0t/bcm for the oxide material was used. The oxidation boundary was interpreted from the geological logs, a DTM created and assigned into the block model.

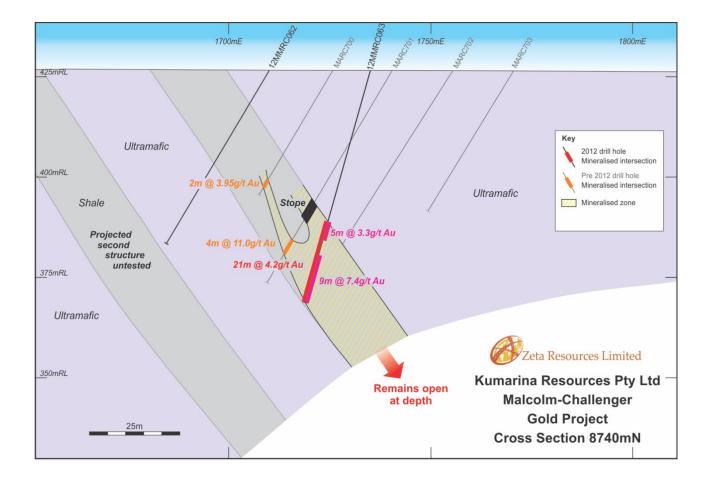
The Indicated resource estimate has been classified based on data density, data quality, confidence in the geological interpretation and confidence in the estimation. The Indicated resource estimate extends to a maximum of 100 metres below surface.

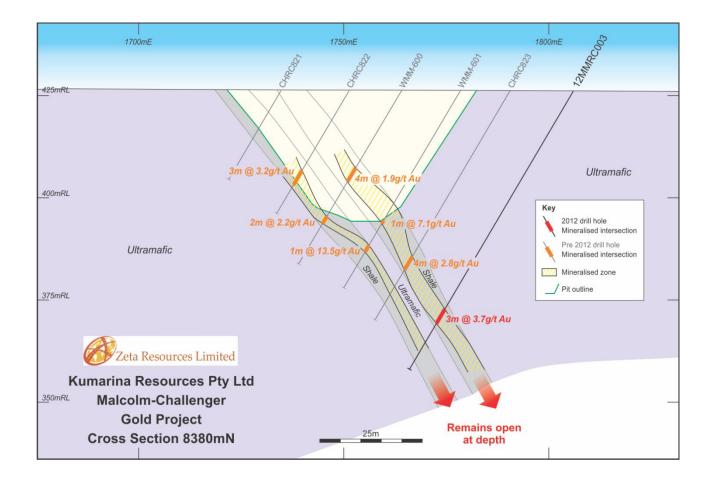
The additional JORC 2012 information is set out in Table 1 following the cross section diagrams below.

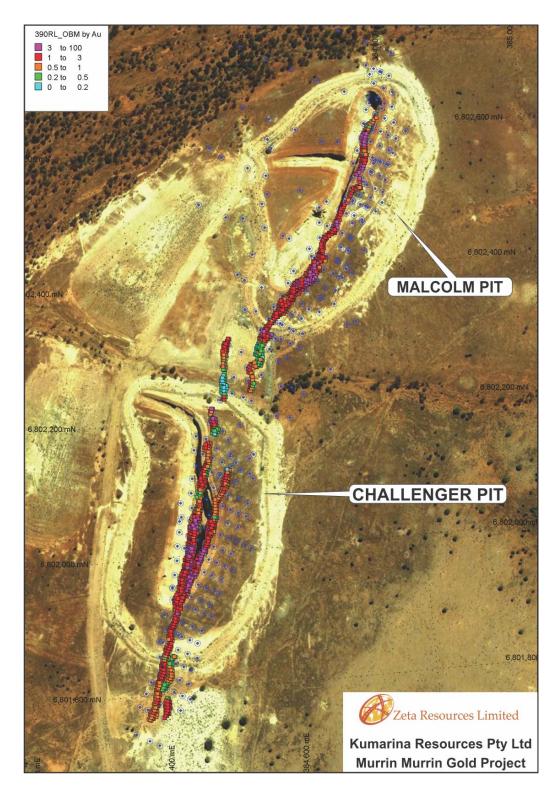
Media Contacts:


Dugald Morrison ICM **Tel:** +64 4 971-7600 **Email:** <u>contact@icmnz.co.nz</u>


Competent Persons Statements


The information in this report that relates to Exploration Results is based on information compiled by Mark Hill. The resource estimate in this report has been made by Simon Coxhell. Mr Hill is a member of Australian Institute of Geoscientists and is a Principal Consultant with Exman Consultancy. Mr Coxhell is a member of the Australasian Institute of Mining and Metallurgy and is a consultant employed by Alchemy Resources. Both Mr Hill and Mr Coxhell have sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which they has undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Both Mr Hill and Mr Coxhell consent to the inclusion in the report of the matters based on information provided in the form and context in which it appears.


-ENDS-


Zeta Resources Limited is incorporated in Bermuda and is listed as a foreign company in Australia under the Corporations Act and is listed on the Australian Stock Exchange (ASX) as an active, resources-focused holding and development company. The Company's core strategy is to make both direct investments in resources projects and indirect investments in resources projects, through investing in entities which hold them. Zeta Resources shares are publicly traded and listed on the Australian Stock Exchange www.asx.com.au (Tickers: ZER for shares and ZERO for options). More details on the Company can be found at www.zetaresources.co.

Malcom Challenger Resource Ore blocks projected at surface

TABLE 1

Section 1 Sampling Techniques and Data

Criteria	Explanation
Sampling Techniques	The mineralisation is sampled by reverse circulation (RC). A total of 354 RC holes have been drilled to a maximum depth of 211m. Holes were drilled angled at 60 [°] towards grid east, which is the optimal drilling orientation for the mineralised lodes.
Drilling Techniques	Drilling was by 5 1/4 inch diameter, face sampling reverse circulation by NDRC Drilling Pty Ltd.
Drill sample recovery	RC recoveries are logged visually as weak, medium or good, with the majority being 'good'. Overall recoveries are >90% and there are no significant sample recovery problems.
Logging	Logging of RC chips records lithology, mineralogy, veining, weathering, colour and other features of the samples. All drill hole samples were logged. RC chips from each metre were placed in a plastic chip tray for later reference.
Sub-sampling techniques and sample preparation	Samples were collected from 1 metre intervals from the drill rigs cyclone and discharged into a cone splitter adjusted to split off 1/8th of the whole sample, sample size was typically 3 to 3.5kg which is considered industry standard sample size for quartz vein hosted gold mineralisation. All samples in the mineralised zones were dry. The samples were submitted to the SGS KalAssay Laboratory in Leonora. The samples were dried, pulverised to a grind size of minus 75 micron fraction and a 40 gram sub-sample was split for analysis. Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing 75 micron was being attained. A field duplicate sample was taken at random at a rate of 1 duplicate sample per drill hole using a spear to extract a sample from the rejects bag. <i>The variation between the original</i> <i>sample Au grade and the duplicate sample Au grades were within acceptable limits</i> <i>suggesting there was no sampling bias.</i> A blank sample of clean washed white quartz sand was also inserted at a rate of 1 per drill hole, typically in the mineralised zone. <i>The analytical grade of the blanks were below</i> <i>detection level, indicating there was no cross contamination of sample in the laboratory</i> <i>sample preparation process.</i>
Quality of assay data and laboratory tests	 Twin holes The analytical technique used a 40 gram Aqua Regia digest, Fire Assay analysis for Au. No geophysical tools were used to determine any element concentrations used in the grade determinations. Certified reference materials have been used, inserted at a random rate of 1 duplicate sample per 20 samples, with a bias insertion towards the mineralised zones. Reference materials are used to assess the bias present in the analytical technique. <i>No analytical bias was detected.</i> Laboratory QAQC involves the use of internal lab standards using certified reference material, blanks, splits and replicates as part of the in house procedures.
Verification of sampling and assaying	External laboratory checks are planned for significant assay results, but have yet to be completed Logging data was collected using a set of standard Excel templates on tough book laptop computers using lookup codes. The information was sent to Mr M Hill (CP) in Perth office for validation and uploaded into the Datashed database.
Location of data points	The collar locations of the 2012 RC holes (12MMRC series) were surveyed by Leonora based surveyor Mulcahey, using a DGPS. The collar locations of the 2013 holes were surveyed using a handheld Garmin GPS following the completion of the drilling. Expected accuracy is + or – 3 m for easting, northing coordinates. Down hole surveys were conducted by ABIM Solutions in December 2012 to measure the density, dip and azimuth and magnetic susceptibility of a number of holes including some of the historical holes. A total of 17 holes were surveyed to primarily assess the degree of deviation of some of the deeper drill holes which included holes 12MMRC007, 12MMRC014, 12MMRC0046, 12MMRC048, 12MMRC052, 12MMRC053, 12MMRC065, 12MMRC067, 12MMRC069, CHRC833, CHRC839, MARC720, MARC724, MM96RC02, PWMM-510, WMM-48 and WMM-50
Data spacing and distribution	The nominal drillhole spacing is 20 metres easting by 20 metres northing. The mineralised domains have demonstrated sufficient continuity in both geological and grade continuity to support the definition of Mineral Resource, and the classifications applied under the 2012 JORC Code. Composite sampling over 4 metres has been used for non-mineralised intervals.
Orientation of data in relation to geological structure	The deposit is drilling towards grid west and varying angles from -55° to -65° to intersect the mineralised lodes at close to perpendicular for the majority of the lodes. No orientation based sampling bias has been identified.
Sample security	Chain of custody is managed by Zeta Resources. Samples were delivered to the Leonora assay lab daily.
Audits or reviews	An internal database review will be undertaken prior to the next resource estimate.

Section 2 Reporting of Exploration Results

Criteria	Explanation
Mineral tenement and land	The Malcolm-Challenger Mines are located wholly within Mining Licence M39/1068.
tenure status	The tenement is held by Kumarina Resources Ltd, a wholly owned subsidiary of Zeta
	Resources Ltd.
	The tenement is in good standing and no known impediments exist.
Exploration done by other	Historical production within the project area commenced in 1897 and was centred on the
parties	Murrin Murrin Gold Mining Centre. Production from 1897 to 1946 was 115,628 ounces of
	gold from 259,000 tonnes of ore at an average grade of 13.8 grams per tonne gold.
	In 1983 BP Minerals Ltd (BP) commenced gold exploration using advanced techniques.
	Exploration continued until 1990 where BP's work was directed towards the evaluation of
	the numerous old gold workings in the Murrin Murrin Mining Centre. Work included
	gridding, geological mapping, rock chip and dump sampling, percussion, reverse
	circulation (RC) and diamond core drilling and limited metallurgical test work. The majority
	of drilling was directed toward delineating a gold resource at the Malcolm and Challenger
	Prospects discovered by BP in 1985.
	Ashton Limited ("Ashton") acquired the project in the 1990's and directed efforts toward
	definition drilling of the Challenger deposit.
	In 1993 Equinox Resources NL entered into a joint venture agreement, known as the
	Murrin Murrin JV ("MMJV"), with Samson to continue exploration of the project area.
	In 1995 Dominion Mining mined the deposits and extracted 126,531 tonnes of ore. The
	ore was treated through the Mt Morgan gold treatment plant where 14,157 ounces of gold
	was recovered at an average recovery grade of 3.5 g/t Au.
	In December 1996, prior to withdrawing from a short lived farm-in to the MMJV, Hunter
	Exploration, (Hunter) completed a final program of 3 RC holes in the Challenger-Malcolm
	zone that confirmed the presence of higher gold grades below the existing open pits.
	From 2005 until 2010 Aumex Mining Pty Ltd undertook work on the project area, primarily
	aircore drilling on the surrounding gold prospects. Their work on the Malcolm –
	Challenger area included an assessment of remnant ore potential.
	Kumarina Resources Ltd acquired the Murrin Murrin Gold Project from Aumex upon
	listing in 2011.
Geology	Gold mineralisation at Murrin Murrin is hosted within ferrouginous quartz stockwork veins
Geology	hosted by a package of bedded siltstones, sandstones, shales and carbonaceous (black)
	shales. These sedimentary packages were typically in the order of 5 to 20 thick, striking
	$\sim 015^{\circ}$ dipping 40 to 60° east. Between the packages of sedimentary lithologies are
	ultramafic rocks, with green smectitic clays common within the pits where the ultramafic
	rocks have been exposed to mining. The ferrouginous quartz veins were typically mapped
	within the sediment units close to the ultramafic contacts, on both the upper and lower
	contacts of the sediment packages.
Drill hole Information	Refer to the body of text in this report and appendix 1 for all the information material to
Drill Hole Information	the understanding of the exploration results.
Data aggregation mathada	
Data aggregation methods	All reported assays have been length weighted. No top-cuts have been applied. A
	nominal 0.5 ppm lower cutoff is applied for RC assays.
	High grade gold intervals internal to broader zones of gold mineralisation are reported as
Deletieneleineleite	included intervals. No metal equivalent values are used for reporting exploration results.
Relationship between	The mineralisation is moderately east dipping, striking local grid north and is drilled to
mineralisation widths and	local grid west with drill holes inclined between -55 and -65 degrees. The intersection
intercept lengths	angles for the drilling are ~ 60 degrees to the mineralised zones in the majority of the
	holes which were drilled at -60. Therefore the reported downhole intersections are
0.	approximately 10 % greater than the true width of the intercept.
Diagrams	Refer to Figures 1, 2 and 3 and Annexure 1 in body of text.
Balanced reporting	All results are reported.
Other substantive exploration	Metallurgical test work carried out on core showed over 92% gold extraction after 24
data	hours leaching at grinds of105 micron, and confirmed the potential for direct CIP recovery
	of gold from the sulphide ore.
Further work	A review as to the economic potential to develop the Malcolm Challenger resource by a
	cut back of the existing open pit will be undertaken prior to committing to further

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1 also apply to this section.)

Criteria	Explanation
Database integrity	Data was provided as a validated Access Database and digitally imported into Micromine Mining Software. Micromine validation routines were run to confirm validity of all data.
Site visits	A site visit has been undertaken, the historic pits were surveyed and the controls of the mineralization reviewed.
Geological interpretation	The confidence in the geological interpretation is good. Detailed geological logging and surface mapping allows extrapolations of drill intersections from section to section. Alternative interpretations will result in similar tonnage and grade estimation techniques. Geological boundaries are determined by the spatial locations of the various mineralised structures. Quartz rich zones associated with increased sulphide accumulations and alteration are
Dimensions	apparent and provide confidence in the continuity interpreted. The Indicated Mineral Resource is 1000 metres long (N-NE) by 40 metres wide (four
Estimation and modelling techniques	 stacked parallel minerals veins) by 100 metres deep. Grade estimation using Inverse Distance Cubed was used for Au (ppm). Four Individual wireframes were used to subset and constrain the data points used in the interpolation and only individual grades from individual wireframes were used. A search of twice the section spacing and hole spacing was used for the interpolation process. (40 m (N) X 20 m (E) X 4 m (Z). The search varied according to the individual zone and was parallel to the azimuth and dip of the mineralised zones (no plunge component assumed). A previous non JORC compliant resource has been made and is consistent given the drilling at the time in comparison with this latest estimate. No assumptions have been made regarding recovery of by-products. No estimation of any deleterious elements have been made and no have been identified. The block model was constructed using a 4m x 2m x 2m block size, constrained by 8 individual wireframes. Geological interpretation of a series of stacked mineralised silica/qtz and sulphide veins/structures was constrained by 4 individual wireframes. Visual validation of comparing block grades with drill hole assay values, via cross sections, plans and long sections was completed.
Moisture	Tonnages are estimated on a dry basis. A nominal cut off 1.0 g/t Au corresponds with the visual mineralisation as determined by
Cut-off parameters Mining factors or assumptions	quartz/minor sulphide and alteration and effectively maps the mineralised zones. The mining scenario if the deposit is shown to be economically viable would likely be a
	conventional open pit. A number of high grade intersections at depth are present and further drilling may define an underground resource. This could be readily developed via a box cut from the base of the open pit.
Metallurgical factors or assumptions	Representative samples have been collected from the recent drilling campaign to conduct metallurgical test work. Historic bottle holes and previous production suggests the gold is all free milling.
Environmental factors or assumptions	No assumptions at this stage in regards to environmental factors or assumptions have been made. A previous gold mining open pit mine is present on site and no impediment to development is considered likely.
Bulk density	An in situ bulk density of 2.0 tonnes per cubic metre has been assumed for the oxide zone and 2.6 tonnes per cubic metre for the fresh material. Downhole geophysics has validated and confirmed these numbers. A digital terrain model (DTM) has been used to discriminate between the oxide and fresh boundaries and is based on geological logging of the drill holes.

(Criteria listed in section 1 also apply to this section.)

Criteria	Explanation
Classification	The Indicted Mineral Resource is based on the nominal drill density of nominally 20 m X 20 m. Appropriate account has been taken of all relevant factors in the estimate and classification. The result of the Resource Estimation reflects the view of the Competent Person.
Audits or reviews	This is the maiden JORC 2012 compliant Resource Estimate for Malcolm Challenger.
Discussion of relative accuracy/ confidence	 The relative accuracy of the Mineral Resource is reflected in the reporting of the Mineral Resource as per the guidelines of the 2012 JORC Code. The statement relates to global estimates of tonnes and grade. Previous production has been historic production (early 1900's) of 44,700 t for the production of 35,000 ounces and in the mid 1980s, open pit production of 102,000 t @ 3.5 g/t Au. The new block model has estimated a total of 100,000 t @ 3.5 g/t in the open pits, providing additional confidence in the recent estimate.

MALCOLM CHALLENGER - DRILLING RESULTS

Hole ID	East	North	MGA_E	MGA_N	From	То	Metres	Au Intercept
PWMM-534	1812	8160	384391	6801766	23	25	2	2m @ 7.17 g/t
PWMM-534	1812	8160	384391	6801766	36	38	2	2m @ 1.30 g/t
PWMM-377	1800	8175	384387	6801785	26	28	2	2m @ 1.35 g/t
12MMRC002	1831	8180	384416	6801774	39	41	2	2m @ 1.59 g/t
PWMM-531	1810	8200	384409	6801802	43	47	4	4m @ 0.91 g/t
WMM-73	1786	8200	384389	6801814	18	23	5	5m @ 1.80 g/t
WMM-74	1836	8200	384432	6801789	62	67	5	5m @ 1.30 g/t
CHRC801	1780	8220	384392	6801834	16	22	6	6m @ 2.30 g/t
CHRC802	1796	8220	384406	6801826	32	37	5	5m @ 3.48 g/t
WMM-71	1782	8240	384404	6801850	25	28	3	3m @ 5.15 g/t
WMM-72	1820	8240	384438	6801832	57	62	5	5m @ 1.28 g/t
CHRC808	1791	8260	384421	6801863	33	36	3	3m @ 4.98 g/t
WMM-68	1774	8280	384417	6801888	20	22	2	2m @ 2.81 g/t
PWMM-525	1787	8280	384428	6801882	38	40	2	2m @ 2.15 g/t
CHRC811	1751	8299	384406	6801917	6	8	2	2m @ 2.60 g/t
CHRC812	1765	8299	384419	6801910	10	16	6	6m @ 0.89 g/t
CHRC813	1781	8300	384432	6801903	30	35	5	5m @ 2.98 g/t
PWMM-522	1776	8325	384441	6801926	32	36	4	4m @ 2.82 g/t
PWMM-523	1788	8325	384452	6801920	46	52	6	6m @ 2.07 g/t
WMM-80	1814	8325	384475	6801908	70	73	3	3m @ 2.12 g/t
CHRC819	1790	8340	384461	6801933	47	51	4	4m @ 1.14 g/t
PWMM-520	1778	8360	384460	6801956	45	49	4	4m @ 1.97 g/t
WMM-65	1790	8360	384471	6801950	53	56	3	3m @ 3.24 g/t
WMM-65	1790	8360	384471	6801950	47	50	3	3m @ 4.72 g/t
WMM-66	1803	8360	384482	6801944	58	69	11	11m@2.75g/t
WMM-79	1816	8360	384489	6801940	68	71	3	3m @ 3.82 g/t
WMM-600	1764	8379	384457	6801980	36	38	2	2m @ 2.24 g/t
WMM-601	1779	8380	384470	6801973	31	34	3	3m @ 1.81 g/t
CHRC823	1791	8380	384481	6801968	47	51	4	4m @ 2.80 g/t
12MMRC003	1806	8380	384494	6801960	61	65	4	4m @ 3.68 g/t
WMM-61	1777	8400	384479	6801992	31	35	4	4m@17.58g/t
WMM-61	1777	8400	384479	6801992	48	50	2	2m @ 3.91 g/t
WMM-61	1777	8400	384479	6801992	53	56	3	3m @ 0.93 g/t
PWMM-382	1764	8400	384468	6801998	37	42	5	5m @ 5.95 g/t
PWMM-518	1789	8400	384490	6801986	46	51	5	5m @ 2.18 g/t
WMM-603	1750	8419	384465	6802022	30	34	4	4m @ 1.85 g/t
WMM-604	1762	8420	384476	6802016	41	49	8	8m @ 1.95 g/t
CHRC826	1776	8420	384488	6802010	31	34	3	3m @ 1.05 g/t
CHRC827	1790	8421	384501	6802003	66	69	3	3m @ 3.55 g/t
CHRC827	1790	8421	384501	6802003	57	62	5	5m @ 1.19 g/t
CHRC827	1790	8421	384501	6802003	48	51	3	3m @ 2.02 g/t
PWMM-516	1752	8440	384476	6802038	36	43	7	7m @ 5.73 g/t
PWMM-385	1764	8440	384487	6802033	47	49	2	2m @ 1.16 g/t

PWMM-517	1790	8440	384510	6802020	80	82	2	2m @ 1.21 g/t
PWMM-517	1790	8440	384510	6802020	53	55	2	2m @ 1.28 g/t
WMM-59	1777	8440	384499	6802027	37	41	4	4m @ 2.66 g/t
WMM-59	1777	8440	384499	6802027	61	66	5	5m @ 1.12 g/t
CHRC833	1780	8460	384512	6802042	66	71	5	5m @ 0.84 g/t
WMMP294	1757	8470	384472	6802084	36	40	4	4m @ 1.60 g/t
PWMM-293	1708	8474	384455	6802090	8	12	4	4m @ 3.65 g/t
PWMM-294	1741	8476	384486	6802076	36	40	4	4m @ 1.60 g/t
PWMM-513	1750	8480	384495	6802074	20	23	3	3m @ 1.25 g/t
CHRC839	1764	8498	384516	6802083	34	37	3	3m @ 2.10 g/t
CHRC837	1740	8499	384496	6802096	39	44	5	5m @ 1.52 g/t
CHRC838	1751	8500	384505	6802091	21	24	3	3m @ 9.63 g/t
PWMM-541	1753	8520	384517	6802107	25	30	5	5m @ 8.09 g/t
PWMM-538	1715	8520	384484	6802101	22	24	2	2m @ 2.71 g/t
PWMM-539	1728	8520	384495	6802120	34	36	2	2m @ 3.93 g/t
PWMM-542	1720	8520	384528	6802102	36	38	2	2m @ 0.30 g/t 2m @ 1.34 g/t
12MMRC007	1787	8536	384555	6802102	64	66	2	2m @ 1.54 g/t 2m @ 5.27 g/t
CHRC842	1707	8538	384485	6802103	16	20	4	4m @ 2.86 g/t
CHRC843	1700	8538	384498	6802140	4	11	7	7m @ 5.54 g/t
PWMM-374	1720	8552	384505	6802152	34	36	2	2m @ 2.05 g/t
WMMP374	1720	8554	384506	6802152	34	38	4	4m @ 1.23 g/t
PWMM-386	1720	8555	384525	6802144	16	22	6	6m @ 1.65 g/t
PWMM-373	1742	8558	384490	6802144 6802167	17	19	2	2m @ 1.20 g/t
WMMP373	1700	8560	384491	6802169	17	19	2	2m @ 1.20 g/t 2m @ 1.15 g/t
PWMM-387	1693	8600	384505	6802207	17	19	2	2m @ 1.13 g/t 2m @ 2.37 g/t
WMM43	1800	8640	384618	6802188	120	124	4	4m @ 0.80 g/t
WMMP292	1779	8647	384593	6802204	96	98	2	2m @ 1.20 g/t
PWMM-292	1779	8657	384608	6802204	96	98	2	2m @ 1.20 g/t 2m @ 1.20 g/t
PWMM-551	1718	8676	384609	6802236			-	6m @ 5.40 g/t
WMM-611	1718	8682	384625	6802230	19 32	25 37	6 5	5m @ 0.79 g/t
PWMM-392	1694	8700	384555	6802291	44	48	4	
PWMM-392 PWMM-391		8730	384593	6802291	20	40 22	2	4m @ 1.80 g/t 2m @ 2.01 g/t
	1720	8761	384617		32	35	3	•
WMM-613 MARC708	1729			6802328 6802340	32	44		3m @ 1.59 g/t 7m @ 2.18 g/t
MARC708 MARC734	1740 1755	8780	384636 384649	6802340 6802333	- 37 - 49	44 59	10	10m@1.38g/t
12MMRC0134	1755	8780		6802335			2	· · ·
WMM-614		8797	384661		49	51		2m @ 3.45 g/t
-	1732	8799	384638	6802360	30	32	2	2m @ 2.09 g/t
WMM44	1820	8800	384715	6802317	126	128		2m @ 4.32 g/t
WMM41	1830	8810	384728	6802321	137	142	5	5m @ 0.98 g/t
95MURC168	1738	8820	384654	6802376	30	34	4	4m @ 3.12 g/t
MM96RC02	1771	8822	384683	6802361	49	56	7	7m @ 2.03 g/t
12MMRC014	1769	8836	384688	6802374	44	57	13	13m@6.26g/t
WMM-615	1735	8839	384661	6802394	25	31	6	6m @ 6.64 g/t
PWMM-548	1714	8840	384643	6802403	13	16	3	3m @ 4.02 g/t
PWMM-618	1752	8840	384676	6802386	16	18	2	2m @ 1.02 g/t
95MURC193	1731	8870	384672	6802422	14	22	8	8m @ 4.29 g/t
95MURC194	1735	8870	384676	6802420	14	24	10	10m@1.19g/t
95MURC195	1740	8870	384680	6802418	22	27	5	5m @ 4.14 g/t

PWMM-552	1724	8880	384670	6802434	12	17	5	5m @ 3.65 g/t
PWMM-509	1724	8920	384720	6802452	26	37	11	11m @3.11g/t
PWMM-510	1730	8920	384731	6802446	50	55	5	5m @ 1.35 g/t
WMMP289	1648	8936	384629	6802533	78	80	2	2m @ 1.70 g/t
WMMP289	1648	8936	384629	6802533	48	52	4	4m @ 6.00 g/t
PWMM-394	1752	8948	384729	6802481	23	32	9	9m @ 4.63 g/t
PWMM-605	1763	8951	384740	6802476	40	44	4	4m @ 1.31 g/t
PWMM-496	1762	9000	384764	6802520	25	30	5	5m @ 1.10 g/t
PWMM-497	1762	9000	384775	6802513	61	63	2	2m @ 2.06 g/t
PWMM-495	1737	9000	384742	6802532	12	14	2	2m @ 1.23 g/t
WMM-607	1746	9020	384760	6802545	35	37	2	2m @ 2.88 g/t
WMM-607	1746	9020	384760	6802545	18	23	5	5m @ 2.06 g/t
WMM-608	1758	9020	384770	6802539	18	29	11	11m@1.41g/t
PWMM-502	1752	9040	384775	6802559	23	26	3	3m @ 2.05 g/t
12MMRC045	1702	8240	384399	6801853	17	23	6	6m @ 1.54 g/t
12MMRC046	1770	8260	384403	6801874	11	13	2	2m @ 1.60 g/t
12MMRC047	1771	8280	384414	6801891	10	16	6	6m @ 2.11 g/t
12MMRC048	1750	8530	384520	6802118	27	30	3	3m @ 0.58 g/t
12MMRC048	1750	8530	384520	6802118	49	50	1	1m @ 0.89 g/t
12MMRC049	1734	8550	384516	6802143	17	18	1	1m @ 2.06 g/t
12MMRC049	1734	8550	384516	6802143	48	51	3	3m @ 0.83 g/t
12MMRC052	1730	8660	384567	6802241	24	33	9	9m @ 0.95 g/t
12MMRC052	1730	8660	384567	6802241	38	41	3	3m @ 0.92 g/t
12MMRC052	1730	8660	384567	6802241	61	66	5	5m @ 1.30 g/t
12MMRC053	1710	8680	384560	6802268	18	22	4	4m @ 6.42 g/t
12MMRC053	1710	8680	384560	6802268	54	57	3	3m @ 0.52 g/t
12MMRC053	1710	8680	384560	6802268	60	63	3	3m @ 0.76 g/t
12MMRC054	1680	8680	384534	6802283	28	29	1	1m @ 0.59 g/t
12MMRC056	1730	8700	384587	6802275	28	29	1	1m @ 1.41 g/t
12MMRC056	1730	8700	384587	6802275	66	89	23	23m@0.98g/t
12MMRC057	1700	8620	384521	6802221	13	14	1	1m @ 2.77 g/t
12MMRC057	1700	8620	384521	6802221	21	23	2	2m @ 2.83 g/t
12MMRC059	1620	8880	384581	6802486	39	40	1	1m @ 0.54 g/t
12MMRC060	1685	8800	384598	6802384	41	42	1	1m @ 0.99 g/t
12MMRC060	1685	8800	384598	6802384	52	55	3	3m @ 0.91 g/t
12MMRC060	1685	8800	384598	6802384	62	68	6	6m @ 0.83 g/t
12MMRC060	1685	8800	384598	6802384	85	88	3	3m @ 2.81 g/t
12MMRC060	1685	8800	384598	6802384	92	95	3	3m @ 4.05 g/t
12MMRC061	1690	8760	384582	6802347	56	57	1	1m @ 0.50 g/t
12MMRC061	1690	8760	384582	6802347	62	67	5	5m @ 3.21 g/t
12MMRC061	1690	8760	384582	6802347	80	89	9	9m @ 1.61 g/t
12MMRC063	1735	8740	384611	6802307	39	60	21	21m@4.17g/t
12MMRC064	1757	8760	384640	6802314	50	63	13	13m@ 4.21g/t
12MMRC064	1757	8760	384640	6802314	66	72	6	6m @ 0.79 g/t
12MMRC065	1707	8580	384507	6802183	23	30	7	7m @ 2.27 g/t
12MMRC066	1695	8580	384500	6802193	18	22	4	4m @ 1.53 g/t
12MMRC067	1758	8820	384678	6802360	43	54	11	11m@1.32g/t
12MMRC068	1785	8840	384702	6802369	57	58	1	1m @ 0.86 g/t

12MMRC068	1785	8840	384702	6802369	63	70	7	7m@12.69g/t
12MMRC069	1770	8880	384710	6802415	36	47	11	11m@2.12g/t
12MMRC069	1770	8880	384710	6802415	59	60	1	1m @ 0.55 g/t
12MMRC070	1775	8920	384733	6802446	40	41	1	1m @ 0.50 g/t
12MMRC070	1775	8920	384733	6802446	47	55	8	8m @ 4.97 g/t
12MMRC071	1770	8940	384737	6802468	24	25	1	1m @ 0.82 g/t
12MMRC071	1770	8940	384737	6802468	28	29	1	1m @ 0.60 g/t
12MMRC071	1770	8940	384737	6802468	34	35	1	1m @ 0.89 g/t
12MMRC071	1770	8940	384737	6802468	44	48	4	4m @ 0.32 g/t
12MMRC072	1775	8970	384759	6802488	48	49	1	1m @ 1.82 g/t
12MMRC072	1775	8970	384759	6802488	52	65	13	13m@12.65g/t
12MMRC072	1775	8970	384759	6802488	68	69	1	1m @ 0.73 g/t
12MMRC073	1760	9000	384759	6802525	36	40	4	4m @ 0.53 g/t
12MMRC074	1765	9020	384774	6802536	17	18	1	1m @ 1.09 g/t
12MMRC074	1765	9020	384774	6802536	21	22	1	1m @ 0.68 g/t
12MMRC074	1765	9020	384774	6802536	35	46	11	11m@3.49g/t
12MMRC074	1765	9020	384774	6802536	52	54	2	2m @ 1.89 g/t
12MMRC075	1763	9038	384781	6802556	28	29	1	1m @ 0.93 g/t
12MMRC075	1763	9038	384781	6802556	40	48	8	8m @ 3.41 g/t
12MMRC075	1763	9038	384781	6802556	54	56	2	2m @ 0.88 g/t
12MMRC076	1772	9040	384787	6802552	53	56	3	3m @ 1.73 g/t
12MMRC077	1700	9040	384728	6802587	8	9	1	1m @ 0.96 g/t
13MMRC002	1785	8880	384710	6802389	63	66	2	2m@ 4.58g/t
13MMRC003	1780	8860	384699	6802350	36	39	4	4m@ 2.94g/t
13MMRC003	1790	8820	384699	6802350	68	70	3	3m @ 3.33g/t
13MMRC004	1775	8800	384676	6802340	52	55	4	4m @ 1.62g/t
13MMRC005	1733	8760	384619	6802326	75	76	2	2m @ 1.11g/t
13MMRC005	1760	8720	384619	6802326	91	93	3	3m @ 3.60g/t
13MMRC006	1735	8680	384623	6802278	60	82	23	23m @0.91g/t
13MMRC006	1700	8660	384623	6802278	100	102	3	3m @33.23g/t
13MMRC007	1785	8880	384581	6802255	40	42	3	3m @ 6.97g/t