

Hurley & Crean - Large, depth extensive, mineralised carbonatites

- Assays from first pass RC drilling at Hurley have confirmed another large niobium-REE mineralised carbonatite at the Aileron project (100% ENR) in the West Arunta region of WA
- Extensive mineralisation intersected on all four drill lines at Hurley, over 1km in strike, including:
 - **24m @ 0.93% Nb₂O₅ & 0.24% TREO from 66m (EAL034)**part of 74m @ 0.53% Nb₂O₅ & 0.20% TREO from 64m
 - 28m @ 0.68 % Nb₂O₅ & 0.16% TREO from 210m (EAL115)
 part of 165m @ 0.36% Nb₂O₅ & 0.15% TREO from 90m to end of hole
 - 72m @ 0.45% Nb₂O₅ & 0.14% TREO from 82m (EAL118) to end of hole
- New results from RC drilling at Crean have extended the mineralised carbonatite including:
 - 6m @ 1.10% Nb₂O₅ & 0.56% TREO from 72m and
 - 2m @ 1.03% Nb₂O₅ & 0.11% TREO from 188m to end of hole (EAL018)
- Latest assay results confirm four mineralised carbonatites were identified in the 2023
 Aileron reconnaissance drill program
- A large program of aircore/RC drilling (~20,000m) and diamond drilling is planned for 2024.
 Drilling aims to quantify the grade distribution and scale of these carbonatites and will also test several new, outstanding targets
- Further details of the 2024 Aileron exploration campaign to be provided next month ahead of commencement

Commenting on the RC drilling at Aileron, Encounter Managing Director Will Robinson said: "First pass drilling at Hurley has identified another large, mineralised carbonatite, over 1km in strike, with every hole that penetrated the transported cover intersecting carbonatite.

In 2023, niobium-REE mineralised carbonatites were intersected at four separate prospects at Aileron in broad spaced drilling: Crean, Hurley, Emily and Green. Associated near surface, enriched niobium-REE mineralisation has been intersected in the initial drilling at two of the four prospects to date; Crean (up to $4m @ 3.8\% \text{ Nb}_2O_5 \text{ from } 56m$) and Emily (up to $12m @ 2.3\% \text{ Nb}_2O_5 \text{ from } 54m$).^{1,2}

Drilling in 2024 will aim to quantify the scale and near surface potential of the four niobium-REE mineralised carbonatites identified so far.

In parallel, a diamond drill rig will commence initial testing of the large-scale geophysical targets identified in the eastern part of Aileron."

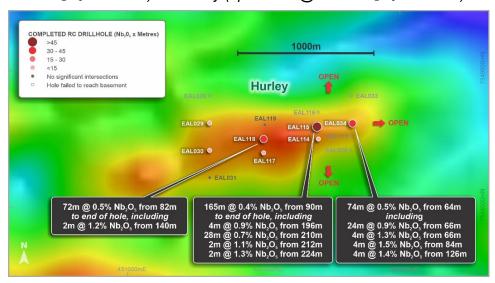


Figure 1 - Hurley drill plan over residual gravity

Encounter Resources Ltd ("Encounter") is pleased to report RC assay results from the Hurley and Crean carbonatites at the Aileron project (100% ENR), in the West Arunta region of WA.

Background

The 100% owned Aileron project covers 1,765km² and is located in the West Arunta region of WA, ~600km west of Alice Springs. The West Arunta is an emerging critical minerals province with significant niobium and REE discoveries made during 2023. Encounter completed large gravity, magnetic and radiometric surveys at Aileron and has used these baseline datasets to define initial drill targets within the project. To date Encounter has completed limited, wide-spaced first pass drilling in the western side of the project. Prospective targets identified in the central and eastern parts of the +100km wide project are still unexplored (Figure 2).

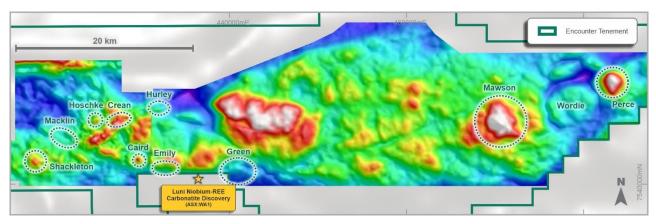


Figure 2 - Aileron Falcon gravity survey has highlighted numerous high priority targets

RC Drill Program

Hurley

The RC drilling at Hurley was designed to test an elongated gravity feature, coincident with a magnetic anomaly, situated on a major regional structure in the northern part of Aileron.

Nine effective RC holes were completed in the first pass drilling at Hurley with a further five holes terminated in transported cover. First pass drilling at Hurley intersected a depth extensive niobium-REE mineralised carbonatite over 1km in strike with intersections including:

- 24m @ 0.93% Nb₂O₅ & 0.24% TREO from 66m (EAL034) part of 74m @ 0.53% Nb₂O₅ & 0.19% TREO from 64m
- 28m @ 0.68 % Nb₂O₅ & 0.16% TREO from 210m (EAL115)
 part of 165m @ 0.36% Nb₂O₅ & 0.15% TREO from 90m to end of hole
- 72m @ 0.45% Nb₂O₅ & 0.14% TREO from 82m (EAL118) to end of hole

All the effective drill holes completed to date at Hurley, that penetrated the transported cover, have intersected the carbonatite. The niobium-REE mineralisation at Hurley appears to be stronger in the central and eastern drill lines where the system remains open to the north, south and east.

Crean

The first diamond drillhole at Crean (EAL007) intersected a niobium-REE mineralised carbonatite (previously reported):

- 19m @ 1.0% Nb₂O₅ & 0.2% TREO from 65m and
- **48m @ 1.0% Nb₂O₅ & 0.2% TREO from 181.5m (EAL007)**part of 282m @ 0.54% Nb₂O₅ & 0.17% TREO from 64m to end of hole

RC drilling completed at Crean 200m north of EAL007 intersected mineralised carbonatite that extended to end of hole:

- 6m @ 1.10% Nb₂O₅ & 0.56% TREO from 72m and
- 2m @ 1.03% Nb₂O₅ & 0.11% TREO from 188m to end of hole (EAL018)

RC hole EAL019B drilled 200m south of EAL007 also intersected mineralised carbonatite but with less consistent niobium-REE mineralisation. Drilling further south (EAL020) did not penetrate the transported cover sequence, hence the southern margin of the carbonatite is not yet defined (Figure 3).

A broad spaced east-west line of 3 RC holes, 400m spaced (EAL091, 92 and 93) was completed at Crean, between EAL007 and EAL008. EAL091 and EAL092 intersected fenite alteration that is seen on the margins of carbonatites. EAL093 (drilled 220m west of EAL007) drilled through fenite alteration and into mineralised carbonatite to end of hole.

Further drilling in 2024 will aim to define the margins and orientation of the large and depth extensive carbonatite identified at Crean and to locate additional near surface, enriched mineralisation.

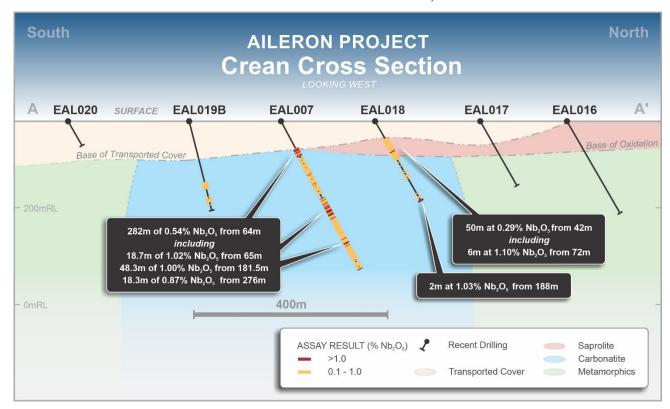


Figure 3 - Crean Cross Section showing large, depth extensive mineralised carbonatite

Next Steps

Hurley

Further RC and diamond drilling will be completed in 2024 to determine the scale and orientation of the Hurley carbonatite, identify the extent of the better zones of mineralisation within the carbonatite and locate possible associated near surface, enriched mineralisation.

Crean

Further drilling will be completed at Crean in 2024 with the aim of identifying further zones of high grade +1% Nb₂O₅ primary niobium-REE mineralisation and also test for zones of adjacent near surface, enriched mineralisation.

An initial metallurgical assessment of the large body of mineralisation at Crean has commenced with a mineralogical characterisation report from EAL007 expected in February 2024.

Hole ID	from (m)	to (m)	interval (m)	Nb2O5 %	TREO %	Nd + Pr (ppm)	NdPr:TREO%	Prospect
EAL018	42	108	66	0.24	0.23	400	20.8	Crean
including	72	78	6	1.10	0.56	1026	21.3	
	118	140	22	0.12	0.09	160	19.9	
	172	174	2	0.12	0.09	180	22.2	
	180	184	4	0.14	0.11	213	22.3	
	188	190 (EOH)	2	1.03	0.11	210	22.3	
EAL019B	128	144	16	0.23	0.11	220	23.6	Crean
	160	178	18	0.15	0.17	329	22.8	
EAL029	66	96	30	0.25	0.16	302	21.2	Hurley
EAL030	94	96	2	0.12	0.15	308	24.7	Hurley
EAL034	64	138	74	0.53	0.19	371	22.2	Hurley
including	66	90	24	0.93	0.24	457	22.2	
and	66	70	4	1.26	0.43	828	22.5	
and	84	88	4	1.50	0.23	462	23.0	
and	126	130	4	1.35	0.2	406	23.7	
	146	178	32	0.17	0.17	333	22.7	
	184	190	6	0.21	0.16	305	22.3	
	196	198	2	0.13	0.15	282	22.6	
EAL093	38	40	2	0.11	0.31	372	14.1	Crean
	84	104	20	0.14	0.12	205	19.5	
	114	116	2	0.11	0.17	251	16.8	
	136	178 (EOH)	42	0.15	0.11	199	21.7	
EAL114	84	106 (EOH)	22	0.26	0.10	199	22.3	Hurley
EAL115	90	255 (EOH)	165	0.36	0.15	277	22.0	Hurley
including	196	200	4	0.92	0.17	323	22.3	
and	210	238	28	0.68	0.16	299	22.2	
including	212	214	2	1.15	0.24	492	24.0	
and	224	226	2	1.33	0.18	346	22.9	
EAL117	66	80	14	0.18	0.11	204	21.6	Hurley
	86	126	40	0.28	0.12	214	21.5	
EAL118	60	64	4	0.17	0.16	289	21.3	Hurley
	82	154 (EOH)	72	0.45	0.14	270	22.1	
including	140	142	2	1.20	0.23	465	23.1	

Table 1: RC drill hole intersections above 0.1% Nb₂O₅ (EOH = end of hole).

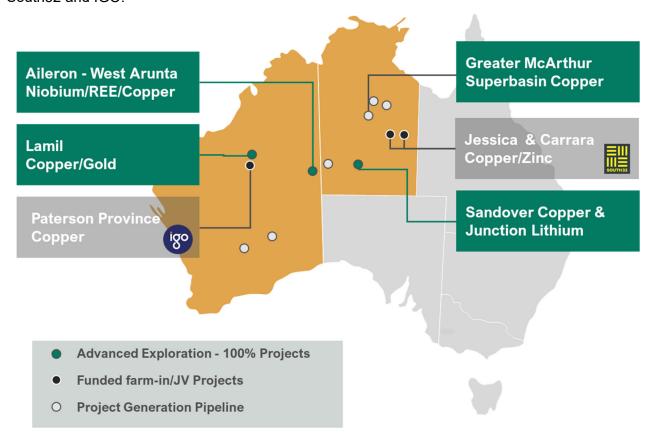
Hole_ID	Hole_Type	MGA_Grid_ID	MGA_East	MGA_North	MGA_RL	Azimuth	Dip	EOH Depth	Prospect
EAL009	RC	MGA94_52	427140	7548232	377	0	-60	142	Crean
EAL010	RC	MGA94_52	427150	7548030	377	0	-60	154	Crean
EAL011	RC	MGA94_52	427157	7547837	377	0	-60	160	Crean
EAL012	RC	MGA94_52	427151	7547643	377	0	-60	244	Crean
EAL013	RC	MGA94_52	428556	7548643	377	0	-60	202	Crean
EAL014	RC	MGA94_52	428550	7548430	378	0	-60	172	Crean
EAL015	RC	MGA94_52	428553	7548228	378	0	-60	172	Crean
EAL016	RC	MGA94_52	428553	7548039	378	0	-60	220	Crean
EAL017	RC	MGA94_52	428550	7547858	378	0	-60	154	Crean
EAL018	RC	MGA94_52	428550	7547641	378	0	-60	190	Crean
EAL019*	RC	MGA94_52	428561	7547258	378	0	-60	48	Crean
EAL019A*	RC	MGA94_52	428562	7547250	378	0	-60	58	Crean
EAL019B	RC	MGA94_52	428564	7547257	378	0	-75	190	Crean
EAL020*	RC	MGA94_52	428534	7547006	378	0	-60	58	Crean
EAL024	RC	MGA94_52	428953	7547828	377	0	-60	154	Crean
EAL025	RC	MGA94_52	428953	7547628	378	0	-60	160	Crean
EAL026	RC	MGA94_52	428953	7547428	377	0	-60	151	Crean
EAL028*	RC	MGA94_52	431593	7548805	378	0	-60	94	Crean
EAL029	RC	MGA94_52	431603	7548614	378	0	-75	208	Hurley
EAL030	RC	MGA94_52	431604	7548411	378	0	-75	204	Hurley
EAL031	RC	MGA94_52	431600	7548209	378	0	-75	184	Hurley
EAL033*	RC	MGA94_52	432653	7548814	380	0	-60	166	Hurley
EAL034	RC	MGA94_52	432652	7548614	380	0	-60	202	Hurley
EAL035*	RC	MGA94_52	432640	7548417	380	0	-60	108	Hurley
EAL042	RC	MGA94_52	435212	7547829	382	0	-75	144	Wild
EAL043	RC	MGA94_52	435218	7547627	383	0	-75	78	Wild
EAL044	RC	MGA94_52	435216	7547432	383	0	-75	90	Wild
EAL045	RC	MGA94_52	435216	7547239	383	0	-75	78	Wild
EAL084	RC	MGA94_52	429748	7549401	378	0	-60	92	Regional
EAL085	RC	MGA94_52	429752	7549004	378	0	-60	138	Regional
EAL086	RC	MGA94_52	429748	7548599	378	0	-60	202	Regional
EAL087*	RC	MGA94_52	429750	7548198	379	0	-60	24	Regional
EAL088*	RC	MGA94_52	429747	7547795	379	0	-60	55	Regional
EAL089	RC	MGA94_52	429750	7547396	380	0	-60	106	Regional
EAL090	RC	MGA94_52	429747	7546605	379	0	-60	112	Regional
EAL091	RC	MGA94_52	427550	7548805	250	0	-75	184	Crean
EAL092	RC	MGA94_52	427951	7548614	377	0	-75	184	Crean
EAL093	RC	MGA94_52	428350	7548411	377	0	-75	178	Crean
EAL111*	RC	MGA94_52	432638	7548525	382	0	-60	90	Hurley
EAL114	RC	MGA94_52	432404	7548485	371	0	-75	106	Hurley
EAL115	RC	MGA94_52	432400	7548549	381	0	-60	255	Hurley
EAL116*	RC	MGA94_52	432399	7548713	380	0	-75	70	Hurley
EAL117	RC	MGA94_52	432001	7548432	380	0	-75	142	Hurley
EAL118	RC	MGA94_52	431998	7548499	383	0	-75	154	Hurley
EAL119	RC	MGA94_52	432008	7548604	380	0	-75	106	Hurley

Table 2: RC drillhole information. Drillholes annotated with * terminated in transported cover.

- ¹ ASX announcement 17 December 2023
- ² ASX announcements 7 August & 6 September 2023

The information in this report that relates to Exploration Results and visual observations is based on information compiled by Ms Sarah James who is a Member of the Australasian Institute of Mining and Metallurgy. Ms. James holds shares and options in and is a full time employee of Encounter Resources Ltd and has sufficient experience which is relevant to the style of mineralisation under consideration to qualify as a Competent Person as defined in the 2012 Edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ms James consents to the inclusion in the report of the matters based on the information compiled by her, in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information in the relevant ASX releases and the form and context of the announcement has not materially changed. The Company confirms that the form and context in which the Competent Persons findings are presented have not been materially modified from the original market announcements.


This announcement has been approved for release by the Board of Encounter Resources Limited.

About Encounter

Encounter is one of Australia's leading mineral exploration companies listed on the ASX. Encounter's primary focus is on discovering major copper and critical mineral deposits in Australia.

Encounter controls a large portfolio of 100% owned projects in Australia's most exciting mineral provinces that are prospective for copper and critical minerals including the Aileron project in the West Arunta region of WA. Complementing this, Encounter has numerous large scale copper projects being advanced in partnership and funded through farm-in agreements with leading miners: South32 and IGO.

For further information, please contact:

Will Robinson
Managing Director
+61 8 9486 9455
contact@enrl.com.au

Michael Vaughan Fivemark Partners +61 422 602 720 michael.vaughan@fivemark.com.au

SECTION 1 SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sounds, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	RC samples undergo routine 2 metre composite pXRF analysis using a Bruker S1 TITAN to aid in logging and identifying zones of interest.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	Drill hole collar locations were recorded by handheld GPS, which has an estimated accuracy of +/- 5m.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	RC drilling was used to obtain riffle split 2m sample with each sample weighing approximately 3kg.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Reverse circulation drilling was used in the drillholes to obtain 1-3 kg samples every 2m downhole.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed	RC sample recoveries were estimated as a percentage and recorded by Encounter field staff.
	Measures taken to maximise sample recovery and ensure representative nature of the samples	Driller's used appropriate measures to minimise down-hole and/or cross – hole contamination in RC drilling. Where contamination of the sample was suspected this was noted by Encounter field staff as a percentage.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	To date, no detailed analysis to determine the relationship between sample recovery and/or and grade has been undertaken for this drill program.

Criteria	JORC Code explanation	Commentary	
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	Encounter Geologists complete geological logs on all RC chips. Lithology, alteration, mineralisation, structure and veining are recorded.	
	appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Detailed logging of diamond holes is completed by Encounter Geologists	
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Geological logging is qualitative in nature and will record interpreted lithology, alteration, mineralisation, structure, veining and other features of the samples.	
	The total length and percentage of the relevant intersections logged	Encounter Geologists have logged reported drillholes in full including lithology, alteration, mineralisation, structure and veining.	
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	No diamond drillholes are being reported	
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were collected on the rig using a riffle splitter. Samples were recorded as being dry, moist or wet by Encounter field staff.	
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples will be sent to ALS laboratories in Perth for analyses. Samples will be crushed and pulverised to enable a subsample for analyses. This is considered appropriate for the analysis to be undertaken.	
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Field QC procedures involve the use of commercial certified reference materials (CRMs) and in house blanks. The insertion rate of these is at an average of 1:33.	
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Field duplicates were taken during RC drilling and were collected on the rig via a riffle splitter at a rate of 1:50. The results from these duplicates are assessed on a periodical basis.	
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered appropriate to give an accurate indication of the mineralisation.	
Quality of assay data and laboratory tests		All samples were submitted to ALS Laboratories in Perth for analysis. Assays have been reported from ALS method ME-MS81D (ME-MS81D reports high grade REE elements by lithium meta-borate fusion and ICP-MS. This method is considered a complete digestion allowing resistive mineral phases to be liberated. This method produces quantitative results of all elements, including those encapsulated in resistive minerals.) Samples were analysed for	
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Ba, Ce Cr, Cs, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Lu, Nb, Nd, Pr, Sc, Sm, Sn, Sr, Ta, Tb, Th, Ti, Tm, U, V, W, Y, Yb, Zr, SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, Cr2O3, TiO2, MnO, P2O5, SrO, BaO.	
	,	Niobium overlimit determination was completed via ALS method ME-XRF30. Assays have been reported from ME-XRF30 when completed. Standard laboratory QAQC was undertaken and monitored.	
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the	RC samples underwent routine pXRF analysis at 2 metre intervals using a Bruker S1 TITAN to aid in logging and identifying zones of interest. All pXRF readings were taken in GeoExploration mode with a	

	applied and their derivation, etc.	OREAS supplied standard reference materials were used to calibrate the pXRF instrument. Laboratory QAQC involves the use of internal lab standards using certified reference material and blanks as part of in-house procedures. Encounter also submits an independent suite of CRMs and blanks (see above). A formal review of this data is completed on a periodic basis.		
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.			
Criteria	JORC Code explanation	Commentary		
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Geological observations included in this report have been verified by senior Encounter geological personell.		
	The use of twinned holes.	No twinned holes have been drilled.		
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary logging and sampling data is being collected for drillholes on toughbook computers using Excel templates and Maxwell Geoservice's LogChief software. Data collected is sent offsite to Encounter's Database (Datashed software), which is backed up daily.		
	Discuss any adjustment to assay data.	Standard stoichiometric calculations have been applied to convert element ppm data to relevant oxides. Industry standard calculation for TREO as follows La ₂ O ₃ + CeO ₂ + Pr ₂ O ₃ + Nd ₂ O ₃ + Sm ₂ O ₃ + Eu ₂ O ₃ + Gd ₂ O ₃ + Tb ₂ O ₃ + Dy ₂ O ₃ + Ho ₂ O ₃ + Er ₂ O ₃ + Tm ₂ O ₃ + Yb ₂ O ₃ + Y ₂ O ₃ + Lu ₂ O ₃ Conversion factors La ₂ O ₃ 1.1728 CeO ₂ 1.2284 Pr ₂ O ₃ 1.1703 Nd ₂ O ₃ 1.1664 Sm ₂ O ₃ 1.1596 Eu ₂ O ₃ 1.1579 Gd ₂ O ₃ 1.1526 Tb ₂ O ₃ 1.151 Dy ₂ O ₃ 1.1477 Ho ₂ O ₃ 1.1455 Er ₂ O ₃ 1.1435 Tm ₂ O ₃ 1.1421 Yb ₂ O ₃ 1.1387 Y ₂ O ₃ 1.2699 Lu ₂ O ₃ 1.1371		
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collar locations are determined using a handheld GPS. Down hole surveys were collected during this drilling program at approximately 30m intervals downhole.		
	Specification of the grid system used.	Horizontal Datum: Geocentric Datum of Australia1994 (GDA94) Map Grid of Australia 1994 (MGA94) Zone 52		
	Quality and adequacy of topographic control.	RLs were assigned using a DTM created during the detailed aeromagnetic survey.		

60 second 3 beam reading.

analysis including instrument make and

model, reading times, calibrations factors

Data spacing and distribution		Crean - RC drill hole spacing is 200m on north-south oriented drill lines. A single east-west line (3 holes, 400m spaced) was completed between two north-south sections 1.5km apart.			
	Data spacing for reporting of	Regional – north-south line of drilling was completed at 400m spacing.			
	Exploration Results.	Hurley – four north-south drill sections were completed spaced 200-400m apart with 1-3 effective holes per drill section.			
		A single north-south drill line was completed at the Wild target at 200m spacing.			
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Mineralisation has not yet demonstrated to be sufficient in both geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications to be applied.			
	Whether sample compositing has been applied.	Intervals have been composited using a length weighted methodology.			
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	This is early-stage exploration drilling and the orientation of the hole with respect to key structures is not fully understood.			
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	This is early stage drilling and the orientation of the hole with respect to key structures is not fully understood.			
Sample security	The measures taken to ensure sample security.	The chain of custody is managed by Encounter. Samples will be transported by Encounter personnel and reputable freight contractors to the assay laboratory.			
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques and procedures are regularly reviewed internally, as is data. To date, no external audits have been completed on Aileron data.			

SECTION 2 REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary		
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues	The Aileron project is located within the tenements E80/5169, E80/5469, E80/5470 and E80/5522 which are held 100% by Encounter Resources		
	with third parties including joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The tenements are contained within Aboriginal Reserve land where native title rights are held by the Parna Ngururrpa and the Tjamu Tjamu.		
	_	No historical or environmentally sensitive sites have been identified in the work area.		

Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Prior to Encounter Resources, no previous on ground exploration has been conducted on the tenement other than government precompetitive data.
Geology	Deposit type, geological setting and style of mineralisation	The Aileron project is situated in the Proterozoic West Arunta Province of Western Australia. The geology of the area is poorly understood due to the lack of outcrop and previous exploration. The interpreted geology summarises the area to be Paleo – Proterozoic in age and it is considered prospective for IOCG style and carbonatite-hosted critical mineral deposits.
Drill hole information	A summary of all information material to the understanding of the exploration results including tabulation of the following information for all Material drill holes:	Refer to tabulation in the body of this announcement.
	 Easting and northing of the drill hole collar Elevation or RL (Reduced Level – elevation above sea level in meters) of the drill hole collar Dip and azimuth of the hole Down hole length and interception depth Hole length 	

Criteria	JORC Code explanation	Commentary	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	All reported assays have been length weighted, with a nominal 0.1% Nb ₂ O ₅ and 0.5% TREO lower limit and a maximum of 4m of internal dilution. Intervals greater than 1% Nb ₂ O ₅ have been reported separately. No upper cuts-offs have been applied.	
	Where aggregated intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All reported assays have been length weighted, with a nominal 0.1% Nb ₂ O ₅ and 0.5% TREO lower limit and a maximum of 4m of internal dilution. Intervals greater than 1% Nb ₂ O ₅ have been reported separately. No upper cuts-offs have been applied.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents have been reported in this announcement.	
Relationship between mineralization widths and intercept lengths	These relationships are particularly important in the reporting of exploration results. If the geometry of the mineralization with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	The geometry of the mineralisation is not yet known due to insufficient drilling in the targeted area.	

Diagrams

Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plane view of drill hole collar locations and appropriate sectional views.

Refer to body of this announcement

Balanced Reporting

Where comprehensive reporting of all Exploration Results is not practical, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.

All reported assays have been length weighted, with a nominal 0.1% Nb₂O₅ and 0.5% TREO lower limit and a maximum of 4m of internal dilution. Intervals greater than 1% Nb₂O₅ have been reported separately. No upper cuts-offs have been applied.

Other substantive exploration data

Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observation; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.

All meaningful and material information has been included in the body of the text.

No metallurgical assessments have been completed.

Further Work

The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large – scale step – out drilling).

Diagrams clearly highlighting the areas of possible

Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.

The next phase of work will include further aircore/RC/diamond drilling at Hurley and Crean.