

ASX Announcement

7 August 2023

RESOURCE DEFINITION DRILLING RESULTS

Predictive Discovery Limited (ASX:PDI) ("PDI" or the "Company") is pleased to report further assay results from resource definition drilling at NE Bankan ("NEB"), Gbenbeden and Bankan Creek ("BC"), within the Bankan Gold Project in Guinea.

HIGHLIGHTS

- Favourable NEB drilling results received from across the deposit area:
 - Best results within the resource pit shell¹ of 29.65m @ 3.42g/t from 365.2m and 18.45m @ 3.20g/t from 184m.
 - **17m @ 2.10g/t** from 265m and **4m @ 6.02g/t** from 249m into the footwall outside the resource pit shell.¹
 - Deep hole intersects **22.5m @ 5.75g/t** from 611.5m adjacent to the current underground Mineral Resource and **9m @ 6.61g/t** from 718m on a second mineralised zone in the footwall.
- BC mineralisation continues to extend at depth, with positive intercepts outside the resource pit shell¹ of 23.35m @ 1.93g/t from 262m, 9.9m @ 1.46g/t from 236.2m and 10.2m @ 0.99g/t from 284m.
- Solid results also received from within the BC resource pit shell¹ including 5.35m @ 5.06g/t from 140m, 10.9m @ 2.06g/t from 240.1m and 7.4m @ 1.79g/t from 128.6m.
- Gbenbeden infill and extension drilling delivers best results of 15m @ 1.52g/t from 10m, 5m @ 3.70g/t from 16m, 9m @ 1.83g/t from 132m and 1m @ 9.65g/t from 66m.
- Drilling results incorporated into the Mineral Resource update which is being released today.

SUMMARY OF DRILLING RESULTS

Results in this announcement are from 27 holes for 6,203m as shown in Table 1. This includes resource definition diamond ("DD") drilling at the NEB and BC deposits and reverse circulation ("RC") drilling at Gbenbeden (refer to Figure 1).

Location	Drill type	Holes	Metres	
NEB	EB DD 6			
Gbenbeden	RC	18	2,024	
BC	DD	3	912	
Total		27	6,203	

Table 1: Drill Holes	Reported i	in this J	Announcement
----------------------	------------	-----------	--------------

¹ All references to resource pit shell are to the pit shells used in the last Mineral Resource estimates in February 2023 for NEB and Gbenbeden and September 2021 for BC.

Predictive Discovery Limited ABN 11 127 171 877 Suite 8, 110 Hay Street, Subiaco WA 6008 T +61 8 9216 1020

ASX: PDI predictivediscovery.com

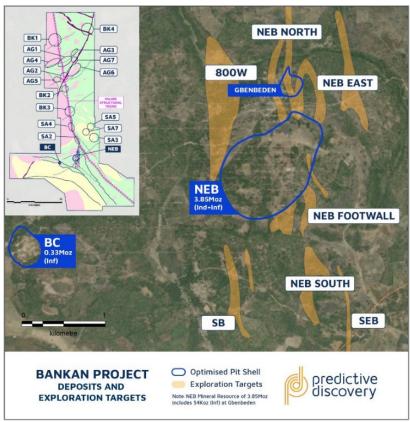


Figure 1: Bankan Project deposits and targets

NEB DRILLING RESULTS

NEB drill holes reported in this announcement include 6 DD holes for 3,268m of resource definition drilling, with best results including:

•	BNEDD0216:	22.5m @ 5.75g/t from 611.5m, incl 1m @ 100g/t from 615m 9m @ 6.61g/t from 718m, incl 5m @ 11.14g/t from 718m
•	BNEDD0230:	29.65m @ 3.42g/t from 365.2m, incl 1.7m @ 15.44g/t from 378m incl 1m @ 10.60g/t from 387m
•	BNEDD0226:	18.45m @ 3.20g/t from 184m, incl 4m @ 7.93g/t from 195m 4m @ 6.02g/t from 249m, incl 1m @ 22.00g/t from 249m 17m @ 2.10g/t from 265m, incl 2m @ 8.60g/t from 271m
•	BNEDD0225:	26m @ 1.78g/t from 153m

The long section and drill plan for NEB are shown in Figure 2 and Figure 3 respectively, with cross sections and additional commentary included in subsequent pages.

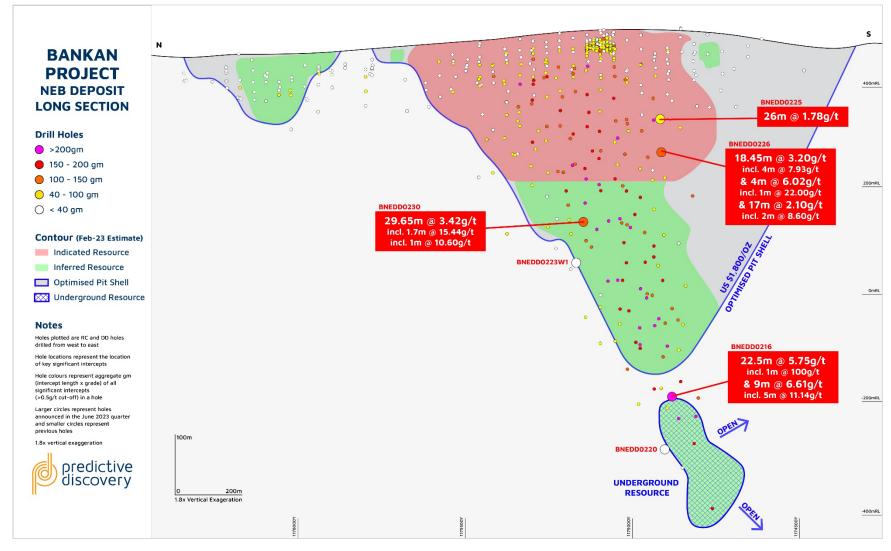


Figure 2: NEB long section, showing new DD results

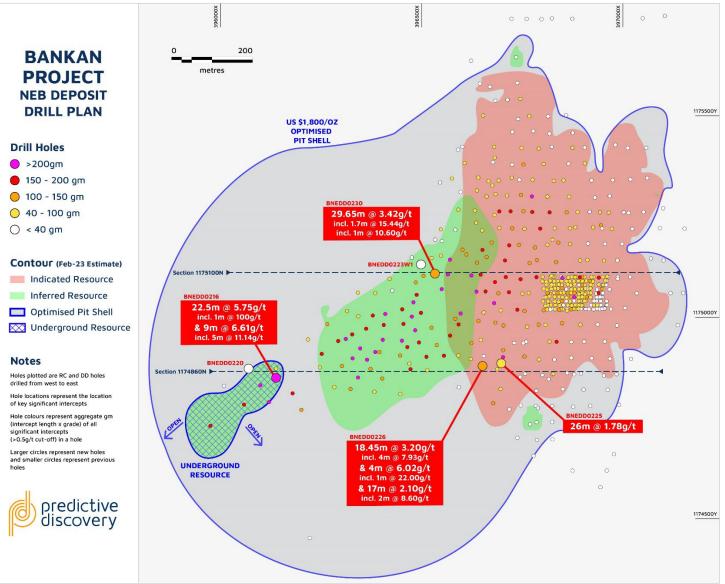


Figure 3: NEB drill plan, showing new DD results

1174860N

This section hosts BNEDD0226, which intersected 18.45m @ 3.20g/t from 184m including 4m @ 7.93g/t from 195m at the mafic-tonalite contact ("MTC") and within the upper part of the resource pit shell. This hole also recorded positive intercepts further into the footwall outside the resource pit shell (as used in the February 2023 Mineral Resource estimate) of 4m @ 6.03g/t from 249m including 1m @ 22.00g/t from 249m and 17m @ 2.10g/t from 265m including 2m @ 8.60g/t from 271m.

1174860N also hosts two new deep holes. BNEDD0216 recorded 22.5m @ 5.75g/t from 611.5m, which is largely driven by a high-grade intercept of 1m @ 100g/t (provisional) from 615m. This intercept is located between two branches of the main shear zone ("STMZ") where the tonalite unit is strained and is cross-cut with veinlets and +2% Py. This high-grade sample reached the upper detection limit and will be re-assayed using a gravimetric method. Further down the hole, BNEDD0216 recorded 9m @ 6.61g/t from 718m including 5m @ 11.14g/t from 718m in the footwall tonalite with strong chlorite alteration and stockwork veinlets with +3% Py +/- Cpy.

BNEDD0220 recorded intercepts of 3m @ 3.25g/t from 771m, 5m @ 2.39g/t from 784m including 1m @ 9.64g/t from 784m, and 7m @ 1.27g/t from 866m. Similar with BNEDD0201 on section 1174820N, results from this hole appear to confirm the northern boundary of the Underground Mineral Resource.

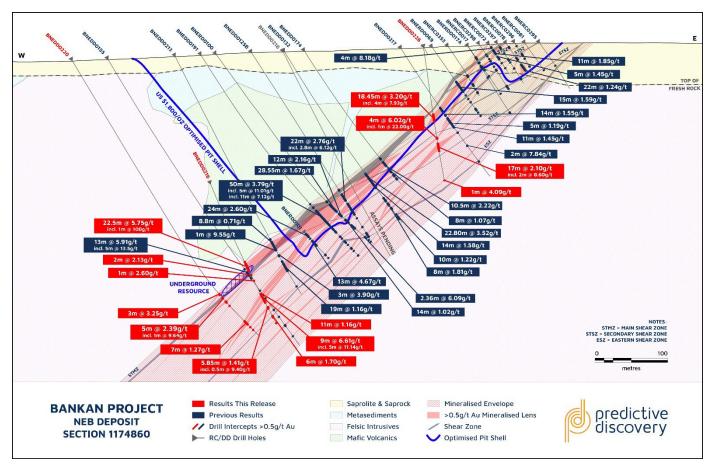


Figure 4: NEB section 1174860N (+20mN/- 20mS)

1175100N

This section hosts BNEDD0230, infilling a gap between BNEDD0088 and BNEDD0091. BNEDD0230 reported a best intercept of 29.65m @ 3.42g/t including 1.7m @ 15.44g/t from 378m and including 1m @ 10.60g/t from 387m. This intercept is in strongly altered tonalite and straddles the STMZ and a secondary shear zone.

Other intercepts recorded in this hole include 8m @ 1.33g/t from 340m and 8.85m @ 0.69g/t from 416.85m which is just outside the resource pit shell used in the February 2023 Mineral Resource estimate.

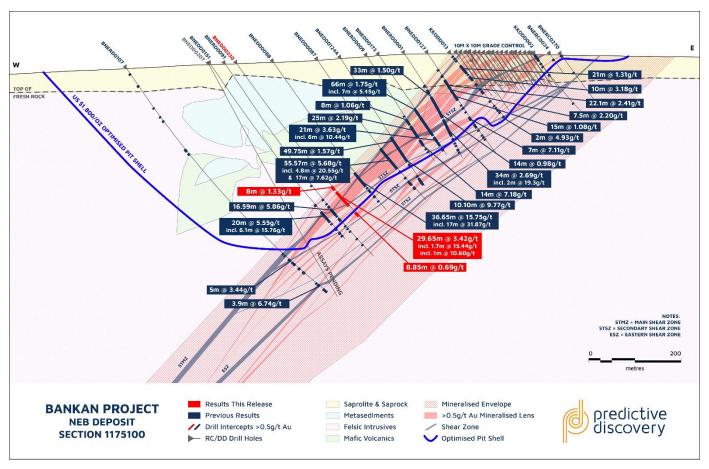


Figure 5: NEB section 1175100N (+20mN/- 20mS)

Other NEB Results

BNEDD0225 recorded an intercept of 26m @ 1.78g/t from 153m in the mafic volcanic unit between two secondary shear zones, within the resource pit shell. Other intercepts of 5m @ 1.47g/t from 201m and 7.2m @ 1.98g/t from 208.8m including 0.6m @ 10.8g/t from 214m were intersected in the footwall beneath the pit shell used in the February 2023 estimate.

BNEDD0223W1 was drilled at the bottom of the pit shell, reporting minor intercepts including 1.2m @ 1.26g/t from 386m and 4m @ 0.59g/t from 436.

Refer to the NEB long section and drill plan in Figures 2 and 3 for visual representation of these results.

GBENBEDEN DRILLING RESULTS

Results have been received from 18 holes for 2,024m at Gbenbeden, where PDI's RC drilling campaign is infilling and targeting extensions of the Inferred Mineral Resource of 54Koz @ 0.70g/t (February 2023 estimate) located immediately north of the main NEB deposit.² Results in this announcement are from across the Gbenbeden deposit area, with best intercepts of:

- BNERC0377: 15m @ 1.52g/t from 10m
- BNERC0370: 5m @ 3.70g/t from 16m, incl 1m @ 12.40g/t from 19m
- BNERC0368: 8m @ 1.64g/t from 104m
 7m @ 1.00g/t from 131m
- BNERC0376: 1m @ 9.65g/t from 66m 4m @ 2.08g/t from 94m
- BNERC0378: 10m @ 0.91g/t from 57m 8m @ 1.19g/t from 80m
- BNERC0366: 9m @ 1.83g/t from 132m
- BNERC0380: 12m @ 0.62g/t from 6m
 9m @ 0.88g/t from 31m

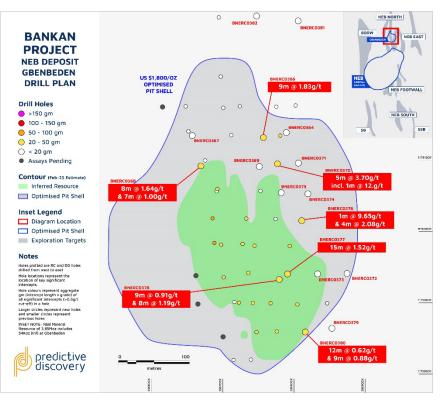


Figure 6: Gbenbeden drill plan, showing new RC results

² ASX Announcement – 50% Of NEB'S 3.5Moz Open Pit Resource Upgraded to Indicated (6 February 2023). Gbenbeden was reported as part of the NEB Open Pit Mineral Resource and is represented as the Northern Domain.

BC DRILLING RESULTS

Results from three DD holes for 912m drilled at BC are reported in this announcement, which targeted the western and lower parts of the September 2021 resource pit shell.

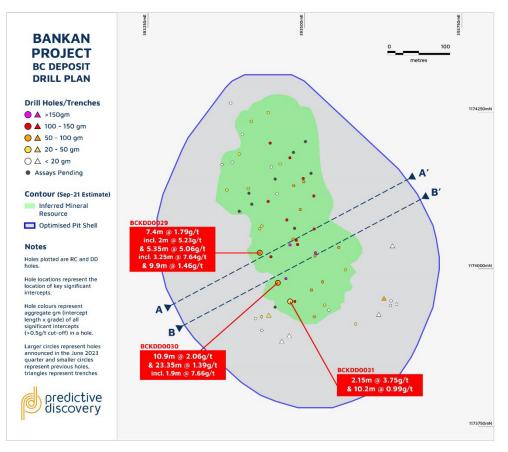


Figure 7: BC drill plan, showing new DD results

BCKDD0029 recorded positive intercepts in the skarn formation adjacent to the hanging wall shear zone, comprising of 7.4m @ 1.79g/t from 128.6m including 2m @ 5.23g/t from 132m, and 5.35m @ 5.06g/t from 140m including 3.25m @ 7.64g/t from 142.1m. Other significant intercepts recorded in this hole include 6.2m @ 0.74g/t from 148.1m associated with a quartz vein, 3.2m @ 1.55g/t from 172.4m in tonalite, and 9.9m @ 1.46g/t from 236.2m beneath the September 2021 resource pit shell associated with the contact between deformed skarn and tonalite with quartz veining.

BCKDD0030 recorded a number of significant intercepts between the main footwall and hanging wall shears, in the tonalite and along the strongly deformed secondary quartz vein stockwork silicified corridors. Best results within the resource pit shell include 2m @ 3.40g/t from 185m, 7m @ 0.62g/t from 227.3m and 10.9m @ 2.06g/t from 240.1m. BCKDD0030 also recorded 23.35m @ 1.93g/t from 262m including 1.9m @ 7.66g/t from 263.6m in tonalite beneath the September 2021 resource pit shell.

BCKDD0031 recorded multiple narrow intercepts within the resource pit shell, including 4m @ 0.99g/t from 41m, 2.15m @ 3.75g/t from 63m and 2m @ 1.87g/t from 70m. The best result in this hole was recorded beneath the September 2021 resource pit shell, intersecting 10.2m @ 0.99g/t from 284m.

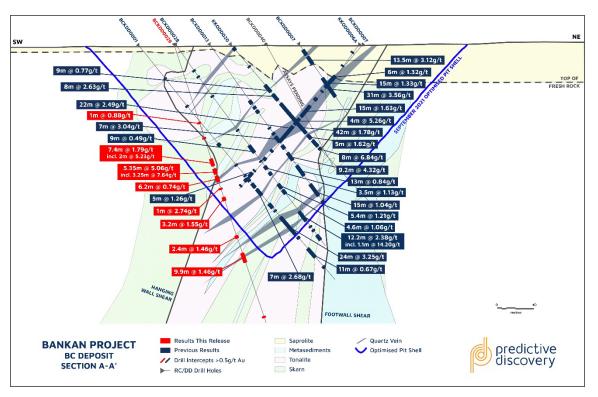


Figure 8: BC section A-A' (+20mNW/- 20mSE)

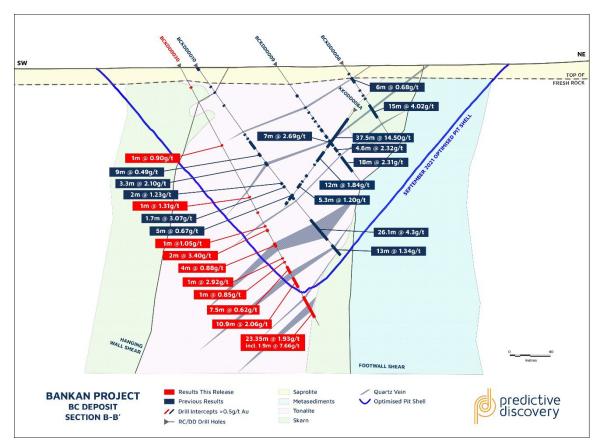


Figure 9: BC section B-B' (+20mNW/- 20mSE)

- END -

This announcement is authorised for release by PDI Managing Director, Andrew Pardey.

For further information visit our website at www.predictivediscovery.com or contact:

Investor Enquiries

Brad Milne Corporate Development Manager E: brad.milne@predictivediscovery.com P: +61 8 9216 1000

Media Enquiries

Bobby Morse/George Pope Buchanan E: predictive@buchanan.uk.com P: +44 (0) 20 7466 5000

ABOUT PREDICTIVE DISCOVERY

PDI's strategy is to identify and develop gold deposits within the Siguiri Basin, Guinea. The Company's key asset is the Tier-1 Bankan Gold Project. A Mineral Resource of 4.2Moz has been defined to date at the NEB (3.85Moz) and BC (331Koz) deposits,³ making Bankan the largest gold discovery in West Africa in a decade.

PDI is focused on sustainably developing Bankan into a Tier-1 gold mine. The Company is aiming to further increase the size and improve the classification of the current Mineral Resource, and complete a Scoping Study and ESG workstreams by late 2023 as crucial steps towards securing a mining permit for the Project.

The Bankan Project is highly prospective for additional discoveries. PDI is also exploring targets near the NEB and BC deposits, and regionally to the north along the 35km gold super structure which runs through the permits.

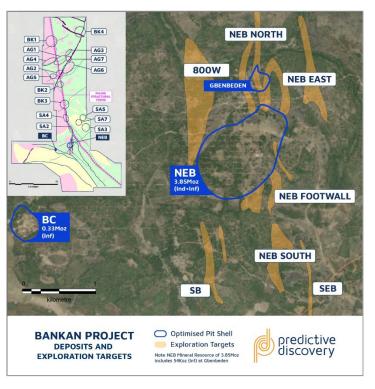


Figure 10: Bankan Project deposits and targets

COMPETENT PERSONS STATEMENT

The Exploration Results reported herein are based on information compiled by Mr Franck Bizouerne, who is a member of the European Federation of Geologists. Mr Bizouerne is a full-time employee of the Company and has sufficient experience relevant to the style of mineralisation and type of deposits being considered to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Bizouerne consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

COMPLIANCE STATEMENT

The information in this announcement that relates to the previous mineral resource estimate is from the announcement titled "50% Of NEB'S 3.5Moz Open Pit Resource Upgraded to Indicated" dated 6 February 2023. The estimate is summarised in the table below.

Deposit	Classification	Cut-off (g/t Au)	Tonnes (Mt)	Grade (g/t Au)	Contained (Koz Au)
	Indicated	0.5	42.7	1.27	1,747
NEB Open Pit	Inferred	0.5	24.7	2.23	1,768
	Total		67.4	1.62	3,515
NEB Underground	Inferred	2.0	2.2	4.75	335
NEB Total			69.6	1.72	3,850
BC Open Pit	Inferred	0.5	7.2	1.43	331
Total Bankan Project			76.8	1.69	4,181

The information in this announcement that relates to the previous exploration results have been cross referenced to the original announcement or are from announcements listed in the table below.

Date	Announcement	Date	Announcement
19 June 2023	Encouraging Drill Results at NEB, BC and Nearby Targets	03 June 2021	NE Bankan Extends to Depth with Strong Gold Grades
19 June 2023	Argo Target Upgraded by Recent Auger Results	31 May 2021	6m at 32g/t Gold from First Drilling at Koundian, Guinea
5 June 2023	Positive Resource Drilling Results from NEB and BC	13 May 2021	Widespread & High-Grade Gold from Bankan Regional Auger
22 May 2023	Multiple High Priority Drill Targets Identified at Argo	06 May 2021	NE Bankan Central Gold Zone Extending to South at Depth
6 April 2023	RC Drilling Underway at Near-Resource Targets	28 April 2021	Bankan Aeromag Many New Drill Targets Along 35km Structure
4 April 2023	Infill Drilling Results	15 April 2021	NE Bankan Gold Mineralisation Substantially Extends at Depth
21 February 2023	High-Grade Intercepts Extends Underground Mineralisation	31 March 2021	NE Bankan Grows To 300m Wide. High Grade Gold from Surface
06 February 2023	50% Of NEB'S 3.5Moz Open Pit Resource Upgraded to Indicated	15 March 2021	Exceptionally High Grades, Thick Intercepts from NE Bankan
30 January 2023	Outstanding Infill Drilling Results Continue	05 March 2021	Substantial Oxide Gold Zone Emerging at NE Bankan Project
30 November 2022	Promising Near-Resource Drilling and Geophysics Results	25 February 2021	More Depth Extensions from Drilling Bankan Gold Discoveries
10 November 2022	Positive Infill Drill Results & Grade Control Program Complete	11 February 2021	High Grade Drill Results Extend Bankan Ck Discovery to North
29 September 2022	High Grade Gold 200m Below NE Bankans 3.9Moz Resource	28 January 2021	Outstanding, Wide Gold Intercept Grows Bankan at Depth
25 August 2022	Impressive Gold Hits Continue At 4.2Moz Bankan Gold Resource	22 January 2021	Bankan Gold Project Drilling Accelerated
01 August 2022	4.2Moz Bankan Gold Resource	27 November 2020	Exploration Update - Bankan Gold Project, Guinea
15 June 2022	Deepest Hole to Date Intercepts Gold 630m Down Dip	20 October 2020	Exploration Update - Bankan-2 Gold Drilling Underway
19 May 2022	60,000m Drill Program Underway at Bankan & Key Appointments	13 October 2020	92m at 1.9g/t Gold - Diamond Drilling Expands Bankan Project
27 April 2022	41.5m @ 5.2g/t Au Intersected at NE Bankan	25 September 2020	NE Bankan Gold Deposit Grows with More Strong Drill Results
02 February 2022	Multi-Deposit Potential Grows with Strong Results	10 September 2020	55m at 2.94g/t Gold-Broad True Widths Confirmed At Bankan
13 January 2022	33m @ 4.5 g/t Au at NE Bankan, Guinea	03 September 2020	NE Bankan Now 1.6km Long with Possible Parallel Gold Zone
16 December 2021	Bankan Project Grows with New Gold Discoveries	27 August 2020	Bankan Creek Gold Zone Further Expanded
09 December 2021	Predictive Intersects 34m @ 5.5 g/t Au at NE Bankan	19 August 2020	Strong Wide Gold Intercepts from Bankan Creek and NE Bankan
22 November 2021	Further Depth Extension to Bankan High-Grade Gold	07 August 2020	Outstanding High-Grade Gold Results from NE Bankan, Guinea
03 November 2021	High-Grade Gold Zone Extended Below Resource Pit Shell	31 July 2020	Diamond Drilling Confirms Gold at Depth at NE Bankan, Guinea
28 October 2021	AC Drilling Identifies New Gold Prospects at Bankan	17 July 2020	Impressive 1st RC Drill Results Grow NE Bankan Discovery
19 October 2021	NE Bankan High-Grade Gold Zone Reinforced and Extended	30 June 2020	NE Bankan Discovery Guinea Extended 30% To 1.3km In Length
30 September 2021	3.65 Million-Ounce Bankan Maiden Mineral Resource Estimate	27 May 2020	Kaninko Auger Results Double Gold-Mineralised Strike Length
23 September 2021	28m @ 12.1g/t Gold 1.5 Km from NE Bankan	07 May 2020	Drilling Update - Kaninko Project, Guinea
16 September 2021	High-Grade Gold Zone Confirmed Up To 400m Vertical Depth	30 April 2020	Final Drill Results, Bankan Creek, Kaninko Project, Guinea
24 August 2021	Strong Widths and Grades from Bankan Creek Resource Drilling	27 April 2020	44m at 2.06g/t Gold from Bankan Creek, Kaninko, Guinea
02 August 2021	More Broad Widths and High-Grades from Bankan Drilling	15 April 2020	Outstanding Drill Results from New Gold Discovery in Guinea
19 July 2021	Bonanza Gold Grades as High-Grade Zone Is Revealed at Bankan	07 April 2020	Guinea Ground Acquired Near Plus-2 Million Oz Gold Deposits
01 July 2021	44m @ 8g/t Gold, Highest Impact Gold Intercept at Bankan	19 March 2020	High-Grades-Broad Widths from Guinea Auger-Trenching Program
17 June 2021	Broad Gold Intercepts from Bankan Creek and NE Bankan	26 February 2020	Up To 8g/t Gold from Power Auger Drilling in Guinea

PDI advises that it is not aware of any new information or data that materially affects the previous exploration results or mineral resource estimate contained in this announcement and all material assumptions and technical parameters underpinning the mineral resource estimate continue to apply and have not materially changed.

APPENDIX 1: NEB DIAMOND DRILLING RESULTS

		UTM 29N	UTM 29N	RL	Hole	Hole	Hole		0.5g/t gold	cut-off	
Hole No.	Prospect	East	North	(GPS)	azimuth	dip	depth	From	Interval	Au g/t	GM
BNEDD0216	NEB	395,904	1,174,820	393	78.8	-69.8	801	606	1	0.50	1
								611.5	22.5	5.75	129
								646	2	2.13	4
								664	1	2.60	3
								704	11	1.16	13
								718	9	6.61	60
								730	3	0.52	2
								745.15	5.85	1.41	8
								773	6	1.70	10
								795	2	0.68	1
BNEDD0220	NEDD0220 NEB	395,656	1,174,850	382	86.3	-59.2	920	771	3	3.25	10
								784	5	2.39	12
								800	1	1.05	1
								866	7	1.27	9
								882	1	1.06	1
								893	1	0.58	1
BNEDD0223W1	NEB	396,265	1,175,100	407	79.6	-61.1	450	386	1.2	1.26	2
								429	1	0.72	1
								436	4	0.59	2
								444	1	0.53	1
BNEDD0225	NEB	396,624	96,624 1,174,879	418	87.3	-62.1	301	127	2	0.85	2
								139	3	1.17	4
								149	1	1.21	1
								153	26	1.78	46
								189	2	0.61	1
								201	5	1.47	7
								208.8	7.2	1.98	14
								230	1	1.63	2
BNEDD0226	NEB	396,622	1,174,879	418	94.3	-81.6	370	184	18.45	3.20	59
								205	1	1.05	1
								249	4	6.02	24
								265	17	2.10	36
								286	1	0.61	1
								368	1	4.09	4
BNEDD0230	NEB	396,294	1,175,109	408	88.2	-54.8	426	340	8	1.33	11
								356	3	0.59	2
								362	1	1.11	1
								365.2	29.65	3.42	101
								416.85	8.85	0.69	6

APPENDIX 2: GBENBEDEN REVERSE CIRCULATION DRILLING RESULTS

		UTM 29N	UTM 29N	RL (GPS)	Hole	Hole	Hole depth		0.5g/t gold	cut-off	
Hole No.	Prospect	East	North		azimuth	dip		From	Interval	Au g/t	GM
BNERC0364	Gbengbeden	396,789	1,176,139	386	100.4	-59.7	40		No significant i	ntercepts	
BNERC0366	Gbengbeden	396,715	1,176,139	386	98.5	-60.3	150	30	1	0.80	1
								43	1	1.53	2
								70	1	2.26	2
								74	1	0.58	1
								132	9	1.83	17
BNERC0367	BNERC0367 Gbengbeden 396,632 1,176,138	386	97.0	-59.2	150	6	1	5.83	6		
								86	1	0.56	1
								90	5	1.43	7
BNERC0368	Gbengbeden	396,632	1,176,098	386	98.8	-59.4	150	9	1	0.68	1
								28	1	0.98	1
								45	1	0.58	1
								104	8	1.64	13
								117	1	0.59	1
					124	1	0.57	1			
								131	7	1.00	7

		UTM 29N	UTM 29N North	RL	Hole	Hole	Hole		0.5g/t gold	cut-off	
Hole No.	Prospect	East		(GPS)	azimuth	dip	depth	From	Interval	Au g/t	GM
BNERC0369	Gbengbeden	396,709	1,176,099	386	99.0	-60.4	150	31	1	0.58	1
	-							44	1	0.69	1
								67	2	0.55	1
								143	1	0.79	1
BNERC0370	Gbengbeden	396,750	1,176,099	387	98.6	-60.4	114	16	5	3.70	19
	-							27	1	0.69	1
								74	1	1.16	1
								92	1	0.52	1
BNERC0371	Gbengbeden	396,790	1,176,099	387	99.8	-60.2	.2 40	26	1	0.72	1
								31	1	0.72	1
								38	1	3.14	3
BNERC0372	Gbengbeden	396,858	1,175,944	394	99.3	-59.6	60	10	1	0.62	1
								21	2	2.44	5
								30	1	0.69	1
								51	3	2.13	6
BNERC0373	Gbengbeden	396,817	1,175,944	393	98.3	-59.6	90	14	1	0.75	1
								32	5	0.70	4
								44	4	0.73	3
BNERC0374	Gbengbeden	396,800	1,176,056	389	97.0	-59.8	80	39	1	0.63	1
BNERC0375	Gbengbeden	396,760	1,176,057	388	96.1	-60.1	130	36	2	2.40	5
								54	1	0.75	1
BNERC0376 Gbengbeden	Gbengbeden	396,779	1,176,019	389	97.5	-60.1	115	35	1	0.74	1
								62	1	4.01	4
								66	1	9.65	10
								87	1	0.70	1
								94	4	2.08	8
BNERC0377	Gbengbeden	396,777	1,175,943	392	97.1	-61.3	120	10	15	1.52	23
								36	2	1.25	3
								45	3	0.82	3
BNERC0378	Gbengbeden	396,738	1,175,942	391	102.0	-60.5	160	26	3	0.79	2
								57	10	0.91	9
								80	8	1.19	10
								158	1	2.52	3
BNERC0379	Gbengbeden	396,833	1,175,869	396	100.0	-60.6	90	13	6	0.69	4
								25	1	0.56	1
								60	1	0.51	1
								64	7	0.95	7
BNERC0380	Gbengbeden	396,791	1,175,863	395	98.1	-61.1	115	6	12	0.62	7
								24	2	0.59	1
								31	9	0.88	8
								57	3	0.86	3
								63	1	0.60	1
								73	1	0.98	1
								80	1	0.60	1
								93	1	2.39	2
BNERC0381	Gbengbeden	396,784	1,176,299	382	98.1	-60.2	120	9	2	0.60	1
	-	-						81	1	0.52	1
BNERC0382	Gbengbeden	396,733	1,176,305	380	101.4	-61.5	150	22	1	2.02	2

APPENDIX 3: BC DIAMOND DRILLING RESULTS

		UTM 29N	UTM 29N	RL	Hole	Hole	Hole		0.5g/t gold	cut-off	
Hole No.	Prospect	East	North	(GPS)	azimuth	dip	depth	From	Interval	Au g/t	GM
BCKDD0029	Bankan Creek	393,401	1,174,001	368	66.8	-72.2	316	87	1	0.88	1
								104.2	1.1	0.54	1
								128.6	7.4	1.79	13
								140	5.35	5.06	27
								148.1	6.2	0.74	5
								162	1	2.74	3
								172.4	3.2	1.55	5
								216.1	2.4	1.46	4
								236.2	9.9	1.46	15
								308.5	1	0.50	1

	_	UTM 29N	UTM 29N North	RL (GPS)	Hole azimuth	Hole	Hole		0.5g/t gold	cut-off	
Hole No.	Prospect	East				dip	depth	From	Interval	Au g/t	GM
BCKDD0030	Bankan Creek	393,426	1,173,947	367	58.7	-62.6	295	22.5	1	0.62	1
								88.5	1	0.90	1
								147.5	1	1.31	1
								165.15	1	0.52	1
								180.7	1	1.05	1
								185	2	3.40	7
								200.6	4	0.88	4
							217.45	1	2.92	3	
								221.8	1	0.85	1
								227.3	7.5	0.62	5
							240.1	10.9	2.06	22	
							262	23.35	1.93	45	
BCKDD0031	Bankan Creek	393,440 1,1	0 1,173,908 368	368	58.7	58.7 -61.2	-61.2 302	25.5	1.5	1.12	2
								41	4	0.99	4
								63	2.15	3.75	8
								70	2	1.87	4
								77	2	0.73	2
								126	2	0.94	2
								145	1	0.87	1
								165	1	1.27	1
								179	1	1.98	2
								187.75	1.15	1.38	2
								197	1	0.91	1
								202	1	1.04	1
								215	1	0.98	1
								223	3	0.81	2
								240	2	0.80	2
								253	1	1.65	2
								258	1	0.65	1
						284	10.2	0.99	10		

APPENDIX 4: JORC CODE TABLE 1

	Section 1: Sampling Techniques and Data									
Criteria	JORC Code Explanation	Commentary								
Sampling Technique	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Samples assayed were cut diamond drill ("DD") core and reverse circulation ("RC") drill chips. Core was cut in half with a core saw where competent and with a knife in soft saprolite in the upper sections of the DD holes. One metre RC chip samples were riffle split producing samples which weighed 2-3kg for submission to the assay laboratory. Duplicate samples were also retained for re-assay. Sampling was supervised by qualified geologists. The majority of samples are 1m downhole, with diamond core sampling intervals breaking at lithological contacts where appropriate. All samples were dried, crushed and pulverised at the SGS and Bureau Veritas laboratories in Bamako and Kankan to produce a 50g fire assay charge with Au analysed by FAA505 at SGS and FA450 at Bureau Veritas. 								

Drilling	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	DD holes included in this announcement were from the following rigs: Sandvik DE710 DD, Sandvik DE710 DD, EDM2000 MP, Comacchio CXT15 MP and UDR200LS DD. Diamond drilling was a combination of PQ, HQ and NQ core. Core was oriented using WELLFORCE orientation tools.
		RC holes included in this announcement were from EDM 2000 multipurpose truck mount rigs.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Core recoveries were recorded by dividing the total length of core returned from each run by the length of the run. Overall core recoveries averaged 92%, with the poorest recoveries (averaging 82%) in the first 40m of the drillholes. Overall RC recovery is very good at 96%, however samples in the first metre have lower than average recovery from the collaring process. Drill holes with poor recoveries were re-drilled within a radius of around 3m from the initial collar. A regularity of the recovery pattern downhole suggests considerable lag between the sample being generated at the hammer and reporting to the cyclone. Drillers do not always adhere to the metre marks on the mast, leading to randomly occurring overlength and underlength samples. It is unlikely that the grade of the RC drill samples has been biased, however the combination of regularly and randomly occurring sample weight variations will lead to a degradation of the local grade estimate and a higher than necessary nugget, as well as increased inaccuracy in the spatial delimitation of ore waste boundaries. The splitters are regularly checked to ensure sample build up is minimised. No relationship between sample recovery and grade has been analysed.
Logging	Whether core and chip samples have been geologically and geotechnical logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean/Trench, channel, etc) photography. The total length and percentage of the relevant intersections logged.	All drill samples were logged systematically for lithology, weathering, alteration, veining, structure and minor minerals. Minor minerals were estimated quantitively. The Competent Person considers that the availability of qualitative and quantitative logging has appropriately informed the geological modelling, including weathering and oxidation, water table level and rock type. Photographs have been taken of each core tray and chip tray. A WELLFORCE core orientation device was employed on all drilled core enabling orientated structural measurements to be taken. The Competent Person considers that the level of detail is sufficient for the reporting of Mineral Resources.
Sub-Sampling Technique and Sample Preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of	The DD samples were collected by longitudinally splitting core using a core saw or a knife where core was very soft and clayey. Routine samples were half-core, with predetermined diamond core duplicates being quarter-core. The sampling method is considered adequate for a DD program of this type. The RC samples were collected by riffle splitting 2-3kg from 1m 30kg bulk samples collected directly from the cyclone attached to the drill rig. Sample quality and condition are logged critically and any loss of sample integrity will trigger the hole being immediately stopped. One blind field is inserted into the sample stream and assayed routinely. The sampling procedures are industry standard. RC sample weights are recorded immediately after collection from the cyclone. Field duplicate results demonstrated no bias in the sample results. There is considerable scatter in the diamond duplicate pairs
	the material being sampled.	suggesting that the mineralisation is likely to be highly variable at a

		short scale, and this variability needs to be taken into account when planning future sampling programs. Sample sizes are considered to be appropriate to the grain size of the material being sampled.
Quality of Assay Data and Laboratory Tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	All samples were assayed by SGS and Bureau Veritas. Analysis of gold is by fire assay technique with a lower detection limit of 5ppb Au. All samples with gold values exceeding 10g/t Au were re-assayed using SGS method FAA515 with a detection limit of 0.01g/t Au. Field duplicates, standards and blank samples were each submitted in sequence every 15 samples. Diamond core duplicates were obtained by cutting the half core sample into two quarter core samples. As samples are not homogenised, some variation is expected. Duplicate and standards analysed were all within acceptable limits of expected values. Analysis of this QAQC data demonstrated that the DD/RC data is of acceptable quality to be used for Mineral Resource estimation.
Verification of Sampling and Assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. The verification of significant intersections by either independent or alternative company personnel. Discuss any adjustment to assay data.	At this stage, the intersections have not been verified independently. A number of DD holes have been completed sufficiently close to previously drilled holes to provide confirmation of the location of mineralisation. Drillhole logging is completed on paper sheets and manually entered into a database on site. The data is managed by a company employee, who checks for data validation. Assay results are returned electronically from the assay laboratory and are merged into the assay table of the database. No adjustments or corrections have been made to any assay interval data. All intercepts are reported as drilled
Location of Data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	All surface drill hole survey information is collected in-house using a Leica 18T RTK DGPS system. The project survey grid is tied to the West African GEOID Datum and WGS84 Zone 29N projection. All DD and RC holes have been surveyed by using north-seeking WELLFORCE CHAMP gyro.
Data Spacing and Distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 NEB: The deposit has been drilled on an 80m x 80m drill spacing which supports an Inferred Mineral Resource estimate, and is being progressively infilled to an 80m x 40m which supports an Indicated Mineral Resource estimate. A detailed 10m x 10m angled RC grade control program has been completed through a 100m section of the surface core mineralised shoot. BC: The deposit was initially drilled on 80m x 80m drill spacing which supports an Inferred Mineral Resource. Current drilling is progressively infilling the drill pattern to a 40m x 40m spacing. Analysis of the drill spacing will be undertaken once all results from the current drilling are received.

	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	orthogonal to t programs were mineralisation of and most areas west dipping ho • The mean east dipping • In the sap more vari • The west > 2g/t; • The mean east dipping • In the sap less variat The west dipping further processions BC: The recent of	he dip and strike oriented to the v dips west, the dril were re-drilled. A oles showed: a and median of t ng in the saprolit rolite, the compo- able; dipping holes in the and median of t ng in the fresh; rolite, the compo- ble. ng data was filtered ng, except for the reinterpretation s the intersecting the drill orientation v	is orientated at as close as possible of the mineralisation. Early drilling vest. When it was recognised that the ling orientation was switched to east An analysis of the data from east and the west dipping holes are higher than e; bosites in the west dipping holes are the saprolite have a larger population the west dipping holes are lower than the west dipping holes are end from the composite dataset before e laterite domain. uggests that east dipping holes are e mineralisation orthogonally. Analysis vill be made once all results from the
Sample Security	The measures taken to ensure sample security.	current drilling are received. Samples are stored in a guarded location close to the nearby Bankan Village. Samples are picked up and transported to Bamako or Kankan by the SGS or Bureau Veritas truck. Pulps from Kankan were further transported by the Bureau Veritas truck to Bamako for assaying. Coarse rejects and pulps will be eventually recovered from SGS and Bureau Veritas and stored at PDI's office in Kouroussa or at the core shed.		
Audits or Reviews	The results of any audits or reviews of sampling techniques and data.	CSA have reviewed the sampling techniques and chain of custody procedures at the project.		
	Section 2 Reporting of Exp	oloration l	Results	
Mineral Tenement and Land Tenure Status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Bankan Gold Project consists of four <i>Permis de Recherche Industrielle (Or)</i> as follows:		
		Permit Name	Area (km²)	Holder
		Kaninko	98.2158	Mamou Resources SARLU
	The security of the tenure held at the time of reporting	Saman	99.74845	Mamou Resources SARLU
	along with any known impediments to obtaining a licence	Bokoro	99.9785	Kindia Resources SARLU
	along with any known impediments to obtaining a licence to operate in the area.	Argo	57.5422	Argo Mining SARLU

Agriculture and other multiple use activities are permitted in Buffer Zone 2, but absence any change of decree, the mining of mineral

		deposits is not permitted. However, there are precedents in Guinea for Mining Permits to be granted in environmentally sensitive areas (e.g. within and adjacent to the Mt Nimba World Heritage Site). PDI is currently undertaking detailed sustainability studies (including an Environmental and Social Impact Assessment) and a Scoping Study to facilitate the permitting process for the Project.
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	PDI is not aware of any significant previous gold exploration over the NEB/BC area. Artisanal miners have extracted an unknown quantity of gold from shallow hand dug pits and shafts, with panning and loaming used to identify mineralized areas.
Geology	Deposit type, geological setting and style of mineralisation.	The Bankan deposits are hosted in Paleoproterozoic rocks of the Birimian Supergroup in the Siguiri Basin, which is host to several significant large active gold mining operations. The predominant rock types consist of felsic intrusives including granite and tonalite, with mafic to intermediate volcanics and intrusives. Metasediments including marble, chert and schists have also been observed. Weathering has formed a deep saprolite profile, with a pisolitic and nodular lateritic cover which hosts remobilised gold, generally above the primary deposits or dispersed a few tens of metres laterally. NEB: Mineralisation consists of wide zones of structurally controlled chlorite, silica and sericite alteration with associated pyrite and quartz veining, emplaced during deformation of anastomosing north-south shears on the hanging-wall of a tonalitic felsic intrusive, which has intruded a mafic and sedimentary greenstone sequence. The mineralisation is found largely in a corridor between two moderately west dipping linking structures. The mineralisation is preferentially developed at the Main Shear, especially around the contact between the footwall tonalite and the overlying mafic/metasediment package. Higher grades are found in a steeply SW plunging shoot; a second high grade shoot down plunge of the main shoot has been identified by five drillholes and is the target of current extensional drilling. BC: BC is a tonalite intrusion into sedimentary carbonate, generating a skarn at the contact between the intrusion and the host rock by metasomatic reaction. This intrusion is bordered by a deformation corridor to the east (footwall), generally following the contact between the metasediment and the intrusion, and to the west by a hangingwall shear zone at the granodiorite-metasediment contact. Skarn facies alteration developed along these two deformed contacts from magmatic hydrothermal fluid. The associated silicic alteration
		carries gold mineralisation. The expression of these events is varied in the core (massive quartz veins, brecciated quartz veins, sheared quartz veins, stockwork quartz veins, silica overprint, etc). The main minerals in the skarn are garnet, epidote, and chlorite, with rare pyroxene and amphibole. The footwall sedimentary carbonate displays strong deformation, including folding.
Drill Hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	See Appendix 1 to Appendix 3.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	

Data Aggregation Methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Sampling was generally in 1m intervals. Up to 2m (down-hole) of internal waste is included for results reported at the 0.5g/t Au cut-off grade.		
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Mineralised intervals are reported on a weighted average basis.		
	The assumptions used for any reporting of metal equivalent values should be clearly stated.			
Relationship Between Mineralisation Widths and Intercept Lengths	These relationships are particularly important in the reporting of Exploration Results	NEB: The drilling targets the west dipping mineralised NEB shoot orthogonally, typically at a dip of -55° and drill pattern of 40m sections and 80m spaced holes. Intercepts are as close to true width		
	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	as physically possible. BC: The drilling targets south-west dipping mineralised lodes orthogonally, at a dip of -55 and drill pattern of 40m x 40m spaced holes. Intercepts are very close to true with exception certain holes including KKODD006A which was drilled at -50 dip and azimuth 210 towards the south-west, giving an exaggerated mineralised width.		
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps and sections are included in this release.		
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Comprehensive reporting of the drill results is provided in Appendix 1 to Appendix 3.		
Other Substantive Exploration Data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All other exploration data on this area has been reported previously by PDI.		
Further Work	The nature and scale of planned further work (eg tests for lateral extensions or large scale step out drilling. Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	NEB: The deposit is open at depth for the majority of its strike length, and along strike to the north. Additional infill drilling is being completed within the open pit shell to further improve the resource classification from Inferred. Step out drilling is being completed to the north along strike and at depth, around the underground resource and selected structural targets along the main shear to potentially add to the total resource.		
		BC: DD drilling is currently underway within and just below the resource pit shell, to better understand the geometry and structural characteristics of the deposit, and the relationships with different alteration facies. The results will continue to refine the interpretation of the mineralised envelope and geological structures, and support a potential upgrading of the resource estimate. Recent results show that mineralisation develops along a field of silicified zones, quartz veins or corridors marked by stockwork of quartz veins. This mineralisation continues at depth to the south-west and laterally to the north and south. Future drilling will explore targets along a north-south corridor between the footwall and hangingwall, with a view to potentially identifying additional resources.		