

ASX ANNOUNCEMENT

10 November 2022

KAROUNI EARN-IN AGREEMENT – BARRICK GOLD CORPORATION

SECOND QUARTER 2022 EXPLORATION REPORT

Troy Resources Limited (**ASX: TRY**) (**Troy** or the **Company**) advises that Barrick Gold Corporation (Barrick) has provided Troy with its Quarterly Progress Report for Second Quarter 2022 (**Q2**) pursuant to the 30 June 2021 Karouni Earn-in Agreement (**Agreement**), as well as an Expenditure Statement.

The project area subject to the Agreement, referred to by Barrick as the Makapa project, covers a fertile structural corridor known as the Makapa Kuribrong Shear Zone (MKSZ), a segment of a 1,000 kilometres long shield-scale corridor that has not previously been explored in the project area, noting that post-mineral sand cover masks the underlying mineral potential.

The project area is illustrated in Figure 1:

Figure 1: Map of Karouni Earn-in Agreement project area.

Barrick advises that, during Q2, project activities consisted of geologic mapping, rock chip sampling, air core drilling, and track clearing activities. Review work is underway to incorporate all of these datasets into an updated integrated map product and a technical report will be completed to summarise all of the main components of the program.

POTARO PROSPECT

Field Mapping

During Q2, the field mapping and rock chip sampling programs were completed. In total, 573 rock chip samples (not inclusive of QAQC samples) have been collected for gold and multielement analysis (Figure 2), of which 112 samples, were taken in Q2. Of these, 14 assay results are > 50 ppb Au and 10 samples are > 200 ppb Au, the highest of which is 1.60 g/t Au.

Figure 2: Rock chip results received through Q2. Q2 samples symbolised with a star symbol. Results received prior to Q2 symbolised with circles.

Work continued to focus on a narrow, non-coherent, NW trending zone of discontinuous low-grade anomalism, initially reported in Q1. The trend covers a strike length of ~9 km (inclusive of unmineralized samples) and ranges from 200-500 m in width. Anomalous samples are primarily located in the steeply dipping southern limb of a NW-SE trending antiformal fold and are hosted within metasedimentary and metavolcanic rocks. The zone comprises a total of 24 assay results >15 ppb Au, spaced 500 - 2,000 m apart. The average grade of the zone is 0.07 g/t Au (based on 178 samples). Of the 24 mineralised samples:

- Fourteen are quartz veins (4 in situ vein samples, 10 quartz float samples)
- Ten are wall rock-hosted (i.e., metasediments, mafic volcanic, intermediate volcanics, volcaniclastic)
- Average grade of anomalous in site veins is 0.40 g/t Au
- Average grade of anomalous float veins is 0.62 g/t Au
- Average grade of anomalous wall rock is 0.40 g/t Au

The anomalous veins comprise quartz – tourmaline - pyrite +/- carbonate +/- chlorite with minimal wall rock sulphidation. The lack of sulphidation downgrades the overall prospectivity and is one of the critical targeting parameters. The in-situ vein density ranges from 1-4 veins per meter with individual veins ranging from 0.5 – 15 cm in width. Based on minimal data, the in-situ veins have three primary orientations: NW-SE, E-W, and NE- SW, likely representing NW trending foliation parallel, transposed veins and last stage cross cutting extensional veins. Specifically: 306/84 (tension vein), 330/70 (tension vein), 110/34 (shear vein), and 062/80 (shear vein).

In addition to the NW-trending zone, an isolated occurrence (single exposure) of higher-grade material occurs in the south-eastern corner of the Area of Interest (AOI), south of the Bartica-Potaro road. The anomaly consists of three quartz- tourmaline vein samples (6.19 g/t, 1.16 g/t, and 1.91 g/t Au), ranging from 0.3-5 cm in width and a vein density of 3 veins/meter. The anomaly was sampled three times, and follow-up mapping in the area (78 samples within a 2 km x 4 km area) did not produce any further anomalous results. The anomalous exposure is the only vein exposure in the area, which is deeply incised. Due to topography, this area was not drilled during the initial air core program. A Bulk Leach Extractable Gold sampling program was planned, but due to poor overall results within the AOI, the program was abandoned.

Details of the rock chip sampling are contained in Table 2.

Air Core Drilling

The AC drilling program was completed in Q2, with the final 9 holes for 748 m. A total of 111 holes for 7,618 m have been completed to date (Figure 3). Details of the final 9 holes are presented in Table 1.

Figure 3: Aircore holes completed in the Potaro area. Holes completed in Q2 are shown in green.

The aim of the program was to screen a 20 km segment of the MKSZ corridor, to define a strikeextensive geochemical footprint indicative of a large hydrothermal system. There were no significant assay results >0.20g/t in Q2, including drill hole that transected the zone of NW trending surface anomalism described previously.

Geologic Map Update

The pre-drilling geologic map in the project area was originally interpreted primarily from aeromagnetic data and a preliminary high-level update was completed in Q4 2021 and Q2 2022 to reflect Barrick's collated field observations. Mapping in Q2 supported and further refined the Q4 geologic interpretation with only minor modifications (Figure 4).

Figure 4: Q1 2022 base map interpretation highlighting main changes from Q1 interp. The main body of schistose sediments is considered a poor host rock based on the results to date for the Makapa project. No significant changes were made to the interpretation in Q2.

With the completion of the program, work will begin on a final integrated map interpretation incorporating all available data sources e.g. multielement data, mag sus etc.

APANACHI PROSPECT

Field mapping and rock chip sampling programs were also conducted at Apanachi. A total of 44 rock chips were taken for gold and multielement analysis (Figure 5).

Figure 5: Sample distribution over the Apanachi AOI.

In total, 68 rock chip samples have been taken at Apanachi to date and none have returned anomalism >0.2 g/t Au.

IMPLICATIONS FOR PROSPECTIVITY

Based on the rock chip and aircore geochemistry to date, the prospectivity of the Potaro and Apanachi AOI have been downgraded. Despite the identification of positive geologic structures and host rock units not previously recognised, the overall gold fertility and ability of the area to host a Tier 1 deposit is considered low.

The position of the MKSZ structure has also yet to be fully verified or defined in the existing data coverage, implying it could either occur to the north or south. Either way, it will be expressed as a zone as opposed to a single strand or structure. Observed anomalism occurs primarily in thin (<15 cm), low-density (4 veins/m) quartz veins +/- rare narrow sulfidized selvages. No significant alteration has been observed to support a long-lived hydrothermal system.

PLANNED ACTIVITIES FOR Q3

All available datasets will be collated into a final integrated map for the Potaro AOI.

A technical report will be compiled detailing the main observations of collated datasets, and recommendations from the program.

Work will begin on assessing remaining target potential in the wider property area, focusing on possible second order structures with short, focused geochemical screening work through field mapping.

EXPENDITURE

During Q2, Barrick incurred expenditure of approximately US\$1.13 million.

Life-of-Project expenditure incurred by Barrick at the end of Q2 is approximately US\$3.84 million.

This announcement has been authorised for release by the Board.

ENDS

For further information please contact:

Richard Beazley – Interim Chief Executive Officer and Managing Director T: +61 8 9481 1277 E: <u>troy@troyres.com.au</u>

Peter Stern - Non-Executive Chairman T: +61 8 9481 1277 E: <u>troy@troyres.com.au</u>

Rebecca Broughton - CFO and Company Secretary T: +61 8 9481 1277 E: <u>troy@troyres.com.au</u>

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled by Richard Maddocks, a Competent Person who is a Fellow of The Australasian Institute of Mining and Metallurgy. Mr Maddocks is employed as an independent consultant to the Company. Mr Maddocks has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Maddocks consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Guyana Karouni Secti	Guyana Karouni Section 1: Sampling Techniques and Data						
Criteria	JORC Code Explanation	Commentary					
Sampling Technique	Nature and quality of sampling (eg cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling Include reference to measures taken to ensure samples are representative and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of	 Material produced during AC drilling is collected at 1 m intervals and samples are composited at nominal 4 m intervals for analysis. Samples are broken based on logged geology (at key horizons within the weathering profile). This sample spacing ensures a representative sample weight is collected at a scale sufficient to define geological and mineralisation boundaries. The use of a nominal 4m sample interval was selected after consideration of the following: The AC drilling method and sample collection process for previous Barrick drill campaigns on other projects. A representative sample weight suitable for transport, laboratory preparation and analysis. 					
	mineralisation that are Material to the Public Report.	The lithological thickness of geologic units encountered.					
	In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverized to produce a 50 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 Anticipated mineralisation zone thickness ranging from several metres to tens of metres. Suitability for statistical analysis. A standard sample length ensures all assay results are treated on equal support when reviewing assay statistics (before sample compositing for geostatistical analysis). Surface samples (rock chips) are collected from approximately 2m beneath the natural surface and weigh approximately 2-3kg. Where appropriate (based on the feature of interest), exposures are channel sampled to ensure representivity. QA/QC procedures are completed as per industry best practice (certified standards and blanks, inserted at a rate of 1 blank and 1 standard every 20 samples). 					
Drilling	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	Air Core "AC" drilling within the prospect area employs RC blade and hammer drilling techniques with minimum 4.0-inch diameter tooling. Hole depths range from 30m to 150m (average 80 m). Air Core Rig supplied and operated by Major Drilling Guyana Inc. Sample material is collected in 6m runs.					
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximize sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	AC recoveries are visually estimated and recorded in the database. Recoveries vary and tend to improve with depth in the weathering profile; in transported cover (sand, clay) recovery averages 39%. In residual regolith and fresh rock recovery averages 62% and %, respectively. A geologist is always present at the rig to monitor and record recovery.					
Logging	Whether core and chip samples have been geologically and geotechnical logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.Whether logging is qualitative or quantitative in nature. Core (or costean/Trench, channel, etc) photography. The total length and percentage of the relevant intersections logged.	Logging of AC samples includes observations regarding regolith profile, lithology, mineralogy, mineralisation, structure, weathering, alteration, colour and other features of the samples. Chips are photographed and stored in plastic chip trays. Bulk reference samples are placed in labelled plastic bags and stored for reference and detailed re-assay as needed. Surface exposures in drainages are sampled and mapped. Mapping observations include interpreted lithology, mineralogy, mineralization, structure, degree of weathering, and colour.					

Sub-sampling technique and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality	AC samples are collected on the rig directly from the cyclone (i.e., without using a riffle splitter). Samples from each 1 m interval are speared to produce a 4m composite. The remainder of the sample is preserved in a labelled plastic bag for reference and re-assay as needed. Composite samples for Au analysis are 2-3 kg in weight. The spear is cleaned with a rag between samples. The cyclone is		
	and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximize representability of samples. Measures taken to ensure that	blown out between 6m runs and is thoroughly cleaned between holes and when the transition between transported cover and saprolite is reached. Material is sampled dry whenever possible; when wet, wet samples are		
	the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	noted in the database. Currently, no field duplicates are taken.		
Quality of Assay data and Laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Actlabs prep procedures consist of drying, crushing to 90% 10 mesh, and pulverizing to better than 90% 150 mesh. The laboratory uses a 50 g fire assay analytical method for detection of 5 – 10,000ppb gold with an AAS finish. Samples exceeding 10,000 ppb		
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors	Au are automatically analysed via 50g fire assay with a gravimetric finish. Laboratory QA/QC procedures involve the use of internal lab standards using certified reference material, blanks, splits and duplicates as part of the in house precedures.		
	applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Barrick inserts both blanks and certified reference materials at an appropriate range of values (1 CRM and 1 blank for every 20 samples or a QAQC insertion rate of 5%). Results highlight that sample assay values are accurate, and that there is no contamination between samples.		
Verification of Sampling and Assaying	The verification of significant intersections by either independent or alternative	The Exploration Manager verifies all significant results (e.g., weighted averages) for accuracy.		
	The use of twinned holes. The verification of significant intersections by either independent or alternative company.	Assay data is imported into an acQuire database via a Microsoft Access interface by Barrick database personnel. Only database administrators are permitted to import assay data.		
	personnel. Discuss any adjustment to assay data.	Blanks and standards must pass internal QAQC checks before the results are permanently imported into the acQuire database. The Senior Geologist is responsible for reviewing QAQC data and approving assays for import by the database team. Samples failing QAQC are flagged and followed up on by the Senior Geologist; in the event that re-analysis is deemed necessary, a new certificate with new certificate number is issued.		
Location of Data Points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and	All air core holes are located using handheld GPS units. No downhole surveys are conducted.		
	Resource estimation. Specification of the grid system used Quality and adequacy of topographic control.	a 24 m resolution Digital Elevation Model, and existing topographic maps. Co-ordinates are reported in PSAD 1956 21 N grid.		
Data Spacing and	Data spacing for reporting of	AC holes are spaced 200-400m apart on 2 km spaced drill lines. This		
Distribution	Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	spacing was deemed fit-for-purpose for early-stage prospecting in a large land package (e.g., for detection of a large hydrothermal system). Positive results will be followed up on at a narrower spacing appropriate for establishing geological continuity and resource estimation.		
Orientation of Data in Relation to Geological Structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	All preliminary AC drilling is oriented at 235°, sub-perpendicular to the orientation of regional foliation and stratigraphy. All holes were drilled at a dip of 70°.		

Sample Security	The measures taken to ensure sample security.	Chain of custody is managed by Barrick. Samples are stored on site and delivered to the Hicks airstrip by Barrick personnel; from the airstrip they are transported to Georgetown via bush plane with other Barrick cargo, and driven to Actlabs in Georgetown for preparation and analysis. Whilst in storage, samples are kept in a secure yard inside the Troy security gate. The yard is patrolled by security personnel. A chain of custody form is used to track and verify the progress of each batch of samples. Upon receipt at Actlabs in Georgetown, chain of custody documentation is scienced by Actlabs personnel and returned to Barrick
		samples. Upon receipt at Actlabs in Georgetown, chain of custody documentation is signed by Actlabs personnel and returned to Barrick.

ction 2 Karouni Reporting of Exploration Results						
Criteria	JORC Code Explanation	Commentary				
Mineral Tenement and Land Status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as	The Karouni Project tenements cover an aggregate area of 211,013 acres (85,394ha), granting the holders the right to explore for gold or gold, diamonds or precious stones.				
	joint ventures, partnerships, overriding royalties, native title Interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time	The tenements have been acquired by either direct grant to Troy Resources Guyana Inc. (15,160 acres/6,135ha) or by contractual agreements with Guyanese tenement holders (195,853acres/79,259ha). Apart from the Kaburi Agreement (28,089 acres/11,367ha) which provides for the Company to earn a 90%				
	of reporting along with any known Impediments to obtaining a license to	interest, all other vendor agreements provide the Company with the right to obtain an ultimate interest of 100%.				
	operate in the area.	The Karouni Project comprises a single (large scale) mining Licence, 40 (small scale) claim licences, 164 (medium scale) prospecting permits and 44 (medium scale) mining permits.				
		All licences, permits and claims are granted for either gold or gold, diamonds or precious stones.				
		The various mining permits that cover the Smarts Deposit were originally owned by L. Smarts and George Hicks Mining.				
		The permits were purchased by Pharsalus Gold (a wholly owned subsidiary of Azimuth Resources) in 2011.				
		Troy Resources acquired the permits with the acquisition of Azimuth Resources in August 2013. All transfer fees have been paid, and the permits are valid and up to date with the Guyanese authorities. The payment of gross production royalties is provided for by the Act and the amount of royalty to be paid for mining licences 5%, however recent mineral agreements entered stipulate a royalty of 8% if the gold price is above US\$1,000 per ounce.				
		On July 1 2021 a JV agreement with Barrick Gold Corporation was announced. Barrick can earn a 51% interest in certain tenements by spending an agreed amount on exploration				
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Little modern exploration has been carried out over the tenement prior to Azimuth's involvement which commenced in 2011.				
		Portions of the Karouni Project have been held continuously by small family gold mining syndicates (locally termed 'Pork Knockers') since the 1960's. This situation persists to the present day.				
		Portions of the current project area were variously held under option to purchase agreements by Cominco (1974-75), Overseas Platinum Corporation (1988) and Cathedral Gold Corporation (1993-2002).				
		In 1999, Cathedral Gold joint ventured the property to Cambior, then owner and operator of the Omai Gold Mine located 40km to the east, with a view to processing the Hicks mineralisation through the Omai processing facility. Cambior intended to use its existing mining fleet, rather than road trains, to haul mill feed from the Hicks Deposit. Execution of this approach proved uneconomic and disruptive to the mining schedule at Omai itself. No further work was undertaken, and the joint venture was terminated in 2000.				
		Available historic records and data were reviewed by both Troy during Due Diligence prior to the takeover and by Runge as part of the Resource modelling and estimation work.				
		In 1995, on the Ohio Creek prospect, Cathedral Gold Corporation ("Cathedral"), the Canadian listed company that first drilled out and then delineated a mineral resource at the (now) Troy-owned Hicks deposit, undertook a 200 metre x 40 metre auger drilling program.				
		Achieving encouraging results, this program was immediately followed up by Cathedral with a diamond drilling program encompassing 11 diamond holes for an aggregate 1,364 metres drilled (for an average of approximately 124 metres per hole).				

	DRILLING RESULTS Geology	Deposit type, geological setting and style of mineralisation.	Primary gold mineralisation is exposed at several localities within the Karouni Project, the most notable being the Hicks, Smarts and Larken Prospects along the northern extremity of the Project, where the White Sand Formation cover has been removed by erosion to expose the underlying mineralised Paleoproterozoic Greenstone successions of the Trans- Amazonian Barama-Mazaruni Group.
			Extensive superficial cover of White Sand Formation within the central and southern portions of the Project tenements masks the basement lithology and conceals any gold mineralisation.
			The evaluation of airborne geophysical data has however indicated that the Barama-Mazaruni Greenstone Belts and associated syntectonic intrusives persist at shallow depth beneath this cover.
			The mineralisation at the Smarts, Hicks, Goldstar, Gem Creek and Larken Zones is associated with a shear zone that transects a sequence of mafic to intermediate volcanic and sedimentary volcanoclastics. The shear zone dips steeply towards the southwest, strikes northwest to southeast, and is characterized by intense brittle- ductile deformation and carbonate alteration plus quartz veining and abundant pyrite.
			The high-grade gold mineralisation is usually associated with zones of dilational and stockworks quartz veining within and adjacent to the shear zone.
			At the Smarts Deposit gold is hosted by a northwest trending, sub- vertical to steeply southwest dipping shear zone 2,800m in strike length and up to 60m wide. The shear zone has developed within basalts and andesites comprising the footwall greenstone succession along the north-eastern limb of a shallowly northwest plunging anticline. Auriferous mineralisation is also noted at the contacts of porphyry- granite intrusives. The shear zone is comprised of semi- continuous zones of quartz lenses and quartz-carbonate veining or brecciation.
			Numerous, moderately well-defined gold-rich lenses, up to 15m wide, occur within the shear zone and are characterized by anomalous quartz veining, quartz flooding, shearing, chloritization, seritisation and pyritisation. Visible gold and the majority of gold values typically occur within and along margins of quartz veins, in either silicified granitic porphyries, and in adjacent, carbonate altered and pyritic sheared basalt or in coarser mafic dyke lenses with intensive pyrite alteration. Pyrite is common at up to 5% by volume associated with auriferous quartz veins.
			Mineralisation is variously accompanied by silica-albite- sericite- chlorite-carbonate-pyrite-tourmaline alteration, while fuchsite is developed within porphyry intrusives in contact with high magnesium basalts and along shear zones.
			Gold mineralisation at Gem Creek is associated with a steeply dipping mafic/sediment contact trending SE-NW. Felsic intrusives are also associated with the contact and possibly with north-south faults. These intrusives are also mineralized with gold.
	Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Drill collar information has been reported in this announcement with a table containing collar location, dip and azimuth and significant gold assay results.
		• easting and northing of the drill hole collar	
		elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
ļ		• dip and azimuth of the hole	
		down hole length and interception depth	
		hole length	
		• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
1			

Data Aggregation Methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Drilling intersections have been reported as length weighted downhole intersections. No top cuts have been applied to exploration results.
Relationship between Mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	No relationship has yet been established
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Diagrams have been included within this announcement
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Reporting is deemed balanced. No substantive results have yet been reported
Other Substantive Exploration Data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	At this stage no other substantive exploration work of data has been completed or reported.
Further Work	The nature and scale of planned further work (eg tests for lateral extensions or large scale step out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not	Further work program includes additional drilling, geological modelling, block modelling and ultimately resource estimation depending on the results received.

Table 1: Makapa Air-core Drilling results >0.1g/t gold

Hole	Easting	Northing	Depth(m)	Azimuth°	Dip°	Peak Gold Assay Intervals
MKAC0103	268549	596983	73	235	-70	4m @ 0.114 g/t gold from 52m
MKAC0104	270106	601891	90	235	-70	4m @ 0.063 g/t gold from 63m
MKAC0105	270367	602226	104	235	-70	NSR
MKAC0106	270570	602502	73	235	-70	NSR
MKAC0107	267758	595920	64	235	-70	NSR
MKAC0108	267909	596159	53	235	-70	NSR
MKAC0109	268216	596315	93	235	-70	4m @ 0.016 g/t gold from 57m
MKAC0110	274025	597173	87	235	-70	NSR
MKAC0111	274235	597505	111	235	-70	NSR

NSR-no significant result

Table 2: Makapa Re	Table 2: Makapa Rock chip sampling results								
Quarter Received	SampleID	Prospect	Easting	Northing	Sample Type	Au_ppm			
Q2 2022	E218651	Potaro	266731	598674	Wallrock grab sample	0.002			
Q2 2022	E218652	Potaro	266640	598696	Wallrock grab sample	0.006			
Q2 2022	E218653	Potaro	266621	598644	Wallrock grab sample	0.005			
Q2 2022	E218654	Potaro	266599	598600	Wallrock grab sample	0.007			
Q2 2022	E218655	Potaro	266414	598585	Shear vein	0.007			
Q2 2022	E218656	Potaro	266414	598585	Shear vein	0.002			
Q2 2022	E218657	Potaro	266330	598597	Wallrock grab sample	0.005			
Q2 2022	E218658	Potaro	266292	598594	Wallrock grab sample	0.002			
Q2 2022	E218659	Potaro	266272	598639	Wallrock grab sample	0.002			
Q2 2022	E218660	Potaro	266241	598618	Wallrock grab sample	0.044			
Q2 2022	E218661	Potaro	266235	598641		0.002			
Q2 2022	E218662	Potaro	266406	597949	Wallrock grab sample	0.002			
Q2 2022	E218663	Potaro	266343	597897	Wallrock grab sample	0.009			
Q2 2022	E218664	Potaro	266132	597899	Veinlet	0.005			
Q2 2022	E218665	Potaro	266004	597907		0.002			
Q2 2022	E218666	Potaro	265994	597889	Wallrock grab sample	0.002			
Q2 2022	E218668	Potaro	267562	598365	Wallrock grab sample	0.002			
Q2 2022	E218669	Potaro	267510	598329	Wallrock grab sample	0.002			
Q2 2022	E218670	Potaro	267508	598319	Shear vein	0.017			
Q2 2022	E218671	Potaro	267494	598214	Wallrock chip/channel sample	0.002			
Q2 2022	E218672	Potaro	267463	598100	Tension vein	0.002			
Q2 2022	E218673	Potaro	267423	598078	Wallrock grab sample	0.002			
Q2 2022	E218674	Potaro	267297	597999	Tension vein	0.006			
Q2 2022	E218681	Potaro	267279	597921	Tension vein	0.022			
Q2 2022	E218683	Potaro	267069	597789		0.002			
Q2 2022	E218888	Potaro	264434	598808	Wallrock grab sample	0.002			

Q2 2022	E218889	Potaro	264325	598951	Wallrock grab sample	0.002
Q2 2022	E218894	Potaro	266666	598159	Wallrock grab sample	0.002
Q2 2022	E218896	Potaro	266467	598017	Wallrock grab sample	0.002
Q2 2022	E218897	Potaro	266485	598006		0.012
Q2 2022	E218898	Potaro	266447	597992	Shear vein	0.403
Q2 2022	E219025	Potaro	266656	599101	Shear vein	0.002
Q2 2022	E219026	Potaro	266623	599126	Shear vein	0.002
Q2 2022	E219027	Potaro	266657	599141	Wallrock grab sample	0.002
Q2 2022	E219028	Potaro	266678	599328	Wallrock grab sample	0.002
Q2 2022	E219029	Potaro	266655	599201	Wallrock grab sample	0.002
Q2 2022	E219030	Potaro	266619	599104	Wallrock grab sample	0.002
Q2 2022	E219031	Potaro	266589	599087	Wallrock grab sample	0.002
Q2 2022	E219032	Potaro	266518	599036	Shear vein	0.002
Q2 2022	E219033	Potaro	265783	599957	Wallrock grab sample	0.002
Q2 2022	E219034	Potaro	265665	600037	Wallrock grab sample	0.002
Q2 2022	E219035	Potaro	265601	600018	Shear vein	0.002
Q2 2022	E219036	Potaro	265528	600059	Shear vein	0.002
Q2 2022	E219037	Potaro	265528	600059	Wallrock grab sample	0.002
Q2 2022	E219038	Potaro	265311	600029	Wallrock grab sample	0.002
Q2 2022	E219039	Potaro	265405	600057		0.002
Q2 2022	E219040	Potaro	264880	598778	Wallrock grab sample	0.002
Q2 2022	E219041	Potaro	264855	598763	Wallrock grab sample	0.002
Q2 2022	E219042	Potaro	264858	598752	Tension vein	0.008
Q2 2022	E219043	Potaro	264826	598724	Wallrock grab sample	0.002
Q2 2022	E219044	Potaro	264677	598693	Wallrock grab sample	0.026
Q2 2022	E219045	Potaro	266835	598371	Wallrock grab sample	0.002
Q2 2022	E219046	Potaro	266823	598376	Shear vein	0.016
Q2 2022	E219047	Potaro	266793	598350	Wallrock grab sample	0.002
Q2 2022	E219048	Potaro	266754	598328	Wallrock grab sample	0.002
Q2 2022	E219049	Potaro	266745	598264	Wallrock grab sample	0.002
Q2 2022	E219050	Potaro	266735	598248	Shear vein	0.006
Q2 2022	E218664	Potaro	266135	597897		0.006
Q2 2022	E218675	Potaro	266957	597792	Wallrock grab sample	0.002
Q2 2022	E218676	Potaro	266936	597778		0.052
Q2 2022	E218677	Potaro	266927	597779	Wallrock grab sample	0.002
Q2 2022	E218678	Potaro	266888	597708	Wallrock grab sample	0.002
Q2 2022	E218679	Potaro	266862	597709	Wallrock grab sample	0.019
Q2 2022	E218684	Potaro	265414	599079		1.037
Q2 2022	E218685	Potaro	265412	598952	Wallrock grab sample	0.002
Q2 2022	E218687	Potaro	265566	598738	Wallrock grab sample	0.005
Q2 2022	E218694	Potaro	265758	598474		0.037
Q2 2022	E218695	Potaro	265534	598746	Wallrock grab sample	0.002
Q2 2022	E218696	Potaro	265417	599155	Shear vein	0.006
Q2 2022	E218697	Potaro	267333	601426	Wallrock grab sample	0.002

Q2 2022	E218698	Potaro	267333	601426		0.002
Q2 2022	E218699	Potaro	264936	600976	Shear vein	0.002
Q2 2022	E218700	Potaro	264910	600974		0.002
Q2 2022	E218856	Kuribrong	261031	604101	Wallrock grab sample	0.002
Q2 2022	E218884	Potaro	266991	597883		0.002
Q2 2022	E218885	Potaro	266959	597818	Shear vein	1.578
Q2 2022	E218886	Potaro	266958	597817	Wallrock grab sample	0.607
Q2 2022	E218887	Potaro	266959	597818	Shear Vein	0.21
Q2 2022	E218899	Potaro	265576	601036	Wallrock grab sample	0.002
Q2 2022	E218900	Potaro	265175	601084	Wallrock grab sample	0.002
Q2 2022	E219051	Potaro	264872	601079	Wallrock grab sample	0.002
Q2 2022	E219052	Potaro	264657	601156		0.002
Q2 2022	E219053	Potaro	264693	601162	Wallrock grab sample	0.002
Q2 2022	E219054	Potaro	264678	601100	Wallrock grab sample	0.002
Q2 2022	E219055	Potaro	264664	601072	Shear vein	0.002
Q2 2022	E219057	Potaro	264533	601076	Wallrock grab sample	0.002
Q2 2022	E219058	Potaro	264404	600930	Wallrock grab sample	0.002
Q2 2022	E219059	Potaro	264369	600922		0.002
Q2 2022	E219060	Potaro	265042	599994	Wallrock grab sample	0.002
Q2 2022	E219061	Potaro	264948	599915	Wallrock grab sample	0.002
Q2 2022	E219062	Potaro	264797	599834	Wallrock grab sample	0.002
Q2 2022	E219063	Potaro	264718	599804	Wallrock grab sample	0.002
Q2 2022	E219064	Potaro	264767	599740	Wallrock grab sample	0.002
Q2 2022	E219065	Potaro	264722	599689	Wallrock grab sample	0.002
Q2 2022	E219066	Potaro	264565	599539	Wallrock grab sample	0.002
Q2 2022	E219067	Potaro	264387	599456	Wallrock grab sample	0.08
Q2 2022	E219068	Potaro	264303	599415	Wallrock grab sample	0.002
Q2 2022	E219069	Potaro	264267	599005	Wallrock grab sample	0.002
Q2 2022	E219070	Potaro	264394	599186	Wallrock grab sample	0.002
Q2 2022	E219071	Potaro	264398	599189	Wallrock grab sample	0.002
Q2 2022	E219072	Potaro	265380	602557	Wallrock grab sample	0.002
Q2 2022	E219073	Potaro	265382	602594	Wallrock grab sample	0.002
Q2 2022	E219074	Potaro	265542	602835	Tension vein	1.02
Q2 2022	E219076	Potaro	266741	597701	Shear vein	0.031
Q2 2022	E219077	Potaro	266691	597690	Wallrock grab sample	0.002
Q2 2022	E219078	Potaro	267356	602740	Wallrock grab sample	0.009
Q2 2022	E219079	Potaro	267137	603178	Wallrock grab sample	0.002
Q2 2022	E219080	Potaro	267821	601997	Wallrock grab sample	0.002
Q2 2022	E219081	Potaro	267803	603009	Wallrock grab sample	0.002
Q2 2022	E219082	Potaro	267329	602638	Wallrock grab sample	0.002
Q2 2022	E219088	Potaro	266185	598937	Wallrock grab sample	0.002
Q2 2022	E219089	Potaro	266189	598903	Wallrock chip/channel sample	0.002
Q2 2022	E219090	Potaro	266215	598863	Wallrock grab sample	0.002
Q2 2022	E219091	Potaro	266198	598848	Wallrock grab sample	0.015

Q2 2022	E219092	Potaro	266157	598819		0.002
Q2 2022	E219093	Potaro	265978	598600	Wallrock grab sample	0.002
Q2 2022	E219094	Potaro	266940	596785	Random grab sample	0.002
Q2 2022	E219095	Potaro	265887	598473	Wallrock chip/channel sample	0.002
Q2 2022	E219096	Potaro	265589	598299	Shear vein	1.622
Q2 2022	E219097	Potaro	265589	598295	Wallrock grab sample	0.011
Q2 2022	E219103	Potaro	266491	597531	Wallrock grab sample	0.002
Q2 2022	E219109	Potaro	266273	598270	Wallrock chip/channel sample	0.002
Q2 2022	E219110	Potaro	266271	598251		0.002
Q2 2022	E219111	Potaro	266227	598211	Wallrock grab sample	0.002
Q2 2022	E219112	Potaro	266200	598208	Chip or channel across feature of interest	0.009
Q2 2022	E219113	Potaro	266200	598208	Wallrock chip/channel sample	0.002
Q2 2022	E219114	Potaro	266191	598077	Wallrock grab sample	0.002
Q2 2022	E219115	Potaro	264167	601766	Wallrock grab sample	0.2
Q2 2022	E219116	Potaro	264174	601751	Wallrock grab sample	0.002
Q2 2022	E219117	Potaro	264149	601794	Wallrock grab sample	0.002
Q2 2022	E219118	Potaro	263871	601846	Wallrock grab sample	0.002
Q2 2022	E219119	Potaro	263856	601852	Chip or channel across feature of interest	0.002
Q2 2022	E219120	Potaro	263692	601824		0.002
Q2 2022	E219121	Potaro	263709	601829	Chip or channel across feature of interest	0.002
Q2 2022	E219122	Potaro	263493	601701	Wallrock grab sample	0.002
Q2 2022	E219123	Potaro	263385	601660	Chip or channel across feature of interest	0.002
Q2 2022	E219127	Potaro	267729	597190	Wallrock grab sample	0.002
Q2 2022	E219128	Potaro	267606	597074		0.002
Q2 2022	E219129	Potaro	267517	597059	Wallrock grab sample	0.002
Q2 2022	E219130	Potaro	267450	597002		0.002
Q2 2022	E219131	Potaro	267346	596937	Shear vein	0.013
Q2 2022	E219132	Potaro	267320	596973	Wallrock grab sample	0.006
Q2 2022	E219133	Potaro	267429	597121	Shear vein	0.002
Q2 2022	E219135	Potaro	267298	596893	Wallrock grab sample	0.002
Q2 2022	E219136	Potaro	267274	596773	Random grab sample	0.002
Q2 2022	E219137	Potaro	266973	596703		0.002
Q2 2022	E219138	Potaro	266985	596712	Wallrock grab sample	0.002
Q2 2022	E219139	Potaro	266956	596789	Wallrock grab sample	0.008
Q2 2022	E219141	Potaro	266940	596785	Wallrock grab sample	0.002
Q2 2022	E219142	Potaro	266953	597835		0.012
Q2 2022	E219143	Potaro	266975	597837		0.012
Q2 2022	E219144	Potaro	266950	597827		0.333
Q2 2022	E219145	Potaro	266959	597835	Shear vein	0.123
Q2 2022	E219146	Potaro	269686	595608	Wallrock grab sample	0.501
Q2 2022	E219186	Apanachi	252047	621493	Wallrock grab sample	0.002
Q2 2022	E219187	Apanachi	252436	621269	Wallrock grab sample	0.002

Q2 2022	E219188	Apanachi	252846	620926	Wallrock grab sample	0.002
Q2 2022	E219189	Apanachi	250996	624250	Wallrock grab sample	0.002
Q2 2022	E219190	Apanachi	251530	623895	Wallrock grab sample	0.002
Q2 2022	E219191	Apanachi	255847	620451	Wallrock grab sample	0.002
Q2 2022	E219192	Apanachi	254812	620268	Wallrock grab sample	0.002
Q2 2022	E219193	Apanachi	254508	620260	Tension vein	0.002
Q2 2022	E219194	Apanachi	254497	620272	Wallrock grab sample	0.002
Q2 2022	E219195	Apanachi	255762	615871	Wallrock grab sample	0.002
Q2 2022	E219196	Apanachi	255519	615613		0.002
Q2 2022	E219197	Apanachi	255287	615116		0.002
Q2 2022	E219312	Apanachi	250523	621462	Tension Vein	0.002
Q2 2022	E219313	Apanachi	250523	621462	Wallrock grab sample	0.002
Q2 2022	E219314	Apanachi	250963	624630	Wallrock grab sample	0.002
Q2 2022	E219322	Apanachi	254179	618726	Wallrock grab sample	0.002
Q2 2022	E219323	Apanachi	254130	618709	Wallrock grab sample	0.002
Q2 2022	E219324	Apanachi	253459	618649	Wallrock grab sample	0.002
Q2 2022	E219325	Apanachi	253241	618783	Wallrock grab sample	0.002
Q2 2022	E219326	Apanachi	254957	617810	Wallrock grab sample	0.002
Q2 2022	E219327	Apanachi	254957	617810	Wallrock grab sample	0.002
Q2 2022	E219198	Apanachi	253850	619371	Wallrock grab sample	0.01
Q2 2022	E219199	Apanachi	253438	618998		0.005
Q2 2022	E219200	Apanachi	253361	618976		0.002
Q2 2022	E219334	Apanachi	254361	622609	Wallrock grab sample	0.002
Q2 2022	E219335	Apanachi	254080	622410	Wallrock grab sample	0.002
Q2 2022	E219336	Apanachi	258002	615435	Wallrock grab sample	0.002
Q2 2022	E219337	Apanachi	254064	614190	Wallrock grab sample	0.002
Q2 2022	E219338	Apanachi	253770	615545	Wallrock grab sample	0.002
Q2 2022	E219339	Apanachi	253590	615507	Wallrock grab sample	0.002
Q2 2022	E219340	Apanachi	252964	614943	Wallrock grab sample	0.002
Q2 2022	E219351	Apanachi	256832	614957	Tension vein	0.002
Q2 2022	E219352	Apanachi	256822	614568	Tension vein	0.002
Q2 2022	E219353	Apanachi	256818	614531	Wallrock grab sample	0.002
Q2 2022	E219354	Apanachi	256835	614459	Wallrock grab sample	0.002
Q2 2022	E219355	Apanachi	256835	614459	Tension vein	0.002
Q2 2022	E219356	Apanachi	256917	614174	Tension vein	0.002
Q2 2022	E219357	Apanachi	256676	614758	Wallrock grab sample	0.002
Q2 2022	E219358	Apanachi	257502	617112	Wallrock grab sample	0.002
Q2 2022	E219359	Apanachi	256218	615169	Wallrock grab sample	0.002
Q2 2022	E219360	Apanachi	254066	613997	Tension vein	0.002
Q2 2022	E219361	Apanachi	254731	613692	Wallrock grab sample	0.002
Q2 2022	E219362	Apanachi	254900	613722		0.002
Q2 2022	E219363	Apanachi	254937	613939	Wallrock grab sample	0.205
Q2 2022	E219364	Apanachi	254909	613937	Wallrock grab sample	0.002
Q2 2022	E219365	Apanachi	254918	614079	Tension vein	0.002
		•				

Q2 2022	E219241	Apanachi	252199	616722	Shear vein	0.008
Q2 2022	E219242	Apanachi	252503	616865	Shear vein	0.002
Q2 2022	E219243	Apanachi	252672	616831	Tension vein	0.002
Q2 2022	E219244	Apanachi	252707	616834	Wallrock grab sample	0.002
Q2 2022	E219245	Apanachi	254127	613369	Wallrock grab sample	0.002
Q2 2022	E219246	Apanachi	254229	613025	Wallrock grab sample	0.002
Q2 2022	E219247	Apanachi	254201	613003	Wallrock grab sample	0.002
Q2 2022	E219248		252001	613908	Wallrock grab sample	0.002
Q2 2022	E219249	Apanachi	251864	613431	Wallrock grab sample	0.002
Q2 2022	E219250	Apanachi	255571	615819	Wallrock grab sample	0.002
Q2 2022	E219341	Apanachi	252730	615951	Tension vein	0.002
Q2 2022	E219342	Apanachi	252693	615950	Wallrock grab sample	0.002
Q2 2022	E219343	Apanachi	252473	615284	Wallrock grab sample	0.002
Q2 2022	E219344	Apanachi	253562	614418	Wallrock grab sample	0.002
Q2 2022	E219345	Apanachi	254127	613369	Wallrock grab sample	0.002
Q2 2022	E219346	Apanachi	254201	613003	Wallrock grab sample	0.002
Q2 2022	E219347	Apanachi	254201	613003	Wallrock grab sample	0.002
Q2 2022	E219348	Apanachi	257099	614148	Wallrock grab sample	0.002
Q2 2022	E219349	Apanachi	257408	614415	Wallrock grab sample	0.002
Q2 2022	E219350	Apanachi	265680	619167	Wallrock grab sample	0.002
Q2 2022	E219451	Apanachi	262265	619962	Wallrock grab sample	0.002
Q2 2022	E219452	Apanachi	262377	619965	Wallrock grab sample	0.002
Q2 2022	E219454	Apanachi	262621	619880	Wallrock grab sample	0.002
Q2 2022	E219455	Apanachi	262745	619763	Wallrock grab sample	0.002
Q2 2022	E219457	Apanachi	262784	619772	Wallrock grab sample	0.033
Q2 2022	E219401	Apanachi	264332	619514	Wallrock grab sample	0.002
Q2 2022	E219403	Apanachi	264471	619571	Wallrock grab sample	0.002
Q2 2022	E219404	Apanachi	264571	619622	Tension vein	0.002
Q2 2022	E219405	Apanachi	265088	619325	Wallrock grab sample	0.002
Q2 2022	E219406	Apanachi	264437	618655	Wallrock grab sample	0.002
Q2 2022	E219407	Apanachi	264275	618933	Wallrock grab sample	0.002
Q2 2022	E219408	Apanachi	264164	619047	Wallrock grab sample	0.002
Q2 2022	E219409	Apanachi	266350	618257	Wallrock grab sample	0.002
Q2 2022	E219410	Apanachi	266383	618104	Wallrock grab sample	0.701
Q2 2022	E219411	Apanachi	266263	617976	Wallrock grab sample	0.01
Q2 2022	E219412	Apanachi	266233	617907	Wallrock grab sample	0.002
Q2 2022	E219413	Apanachi	261781	620877	Wallrock grab sample	0.002
Q2 2022	E219414	Apanachi	261772	620659	Wallrock grab sample	0.002