12 February 2021

LAGOON CORPORATION LTD

Burracoppin Magnetite Deposit in WA

Reedy Lagoon Corporation Limited ("RLC") has engaged H & S Consultants Pty Ltd ("H&SC") to assist in planning how best to establish if there is a Mineral Resource at RLC's Burracoppin Magnetite deposit located near Merredin in Western Australia.

H&SC is a geological consulting company based in Sydney and Brisbane, Australia. Its services include resource estimation, data management, technical audits, due diligence and feasibility studies. H&SC personnel have broad experience in assessing and evaluating a range of different types of Iron Ore deposits.

Simon Tear, Consulting Geologist and Director of H&SC, has created a series of Exploration Targets and subsequent definition of Mineral Resources for the Braemar Basin-hosted Hawsons, Mutooroo and Olary magnetite deposits in NSW and South Australia (2012-2020) and the Nelson Bay Iron Skarn Project in NW Tasmania (2005-2017). He has also completed a 3D structural interpretation of the Valentines Banded Iron Formation deposit in Uruguay (2010-11).

Mr Tear has been at the forefront of incorporating geoscientific data including geophysics and lithogeochemistry to inform the process of defining mineral deposits. These are skills we believe will aid in establishing Mineral Resources at Burracoppin.

A copy of H&SC's review of existing Burracoppin deposit data is attached.

The report states that using the estimated volumes of the 4 interpreted mineral zones and an average density of $3.18t/m^3$ an Exploration Target can be generated of 100 to 120Mt at a Davis Tube Recovery ("DTR") grade of 25-35% to give 25 to 40Mt of magnetite concentrate with a 67 to 71% iron grade and a 1-4% SiO₂ grade with low alumina, phosphorous and sulphur.

It should be noted that the potential quantity and grade of the Exploration Target is conceptual in nature, and there has been insufficient exploration to estimate a Mineral Resource; it is uncertain if further exploration will result in the estimation of a Mineral Resource.

The report also states that the Exploration Target is open at both ends and there is considerable exploration potential, particularly evidenced from the airborne magnetic data, to discover additional resources over an additional strike length of at least 2.4km.

The Burracoppin Magnetite deposit was discovered in 2012 when magnetite mineralisation was intersected in core drilling designed to test a 3 kilometre long magnetic anomaly identified in airborne magnetic data (refer ASX release <u>25 Oct 2012</u>). RLC holds 100% of the iron project.

RLC is actively seeking to establish "green iron" production in Western Australia using HIsmelt Technology to smelt magnetite from the Burracoppin deposit using biochar as the reductant instead of coal (refer to ASX release <u>9 Feb 2021</u>). The project aims to produce 1Mt of pig iron per annum which would require about 1.6Mt of magnetite concentrate per annum. Authorised for release on behalf of the Company.

Geof Fethers, Managing Director Telephone: (03) 8420 6280 reedylagoon.com.au Reedy Lagoon Corporation Limited P O Box 2236, Richmond VIC 3121

The information in this report that relates to Exploration Results is based on and fairly represents information compiled by Geof Fethers who is a member of the Australian Institute of Mining and Metallurgy (AusIMM). Geof Fethers is a director of the Company and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code). Geof Fethers consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

The attached report titled: "Assessment of the Burracoppin Magnetite Deposit" is based on and fairly represents information compiled by Simon Tear who is a member of the Australian Institute of Mining and Metallurgy (AusIMM). Simon Tear consents to the form and context in which the Exploration Target described in the report appears. Simon Tear is an independent Consulting Geologist and Director of H & S Consultants Pty Ltd and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code). Simon Tear consents to the inclusion of the report in the form and context in which it appears.

Where Exploration Results have been reported in earlier RLC ASX releases referenced in this report, those releases are available to view on the INVESTORS page of reedylagoon.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in those earlier releases. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

RESOURCE ESTIMATION | FEASIBILITY STUDIES | DUE DILIGENCE

RESOURCE SPECIALISTS TO THE MINERALS INDUSTRY

11th February 2021

Geof Fethers Reedy Lagoon

Assessment of the Burracoppin Magnetite Deposit

H&SC has completed an initial review of the supplied Burracoppin data. This has included:

- Creation of a drillhole database and connection to the Surpac mining software
- Review of core photographs
- Review of relevant reports for drilling, magnetic data processing and metallurgical testwork
- Importation of airborne geophysics (Fugro images), MIRA Geophysics DXFs and 2D mag model data
- Lithogeochemical interpretation of drilling data
- Completion of a 3D geological interpretation including oxidation & fault surfaces
- Proposed drillhole plan designed to generate Indicated Resources

Outcomes of data review:

The drilling data comprise three holes with BU12DD001 and BU12DD002 targeting the along strike continuity of the magnetite mineralisation associated with the main magnetic anomaly (holes approximately 600m apart, see figure below from Cliffs' licence renewal report). Hole BU12DD003 tested the down dip continuity of mineralisation observed in BU12DD001.

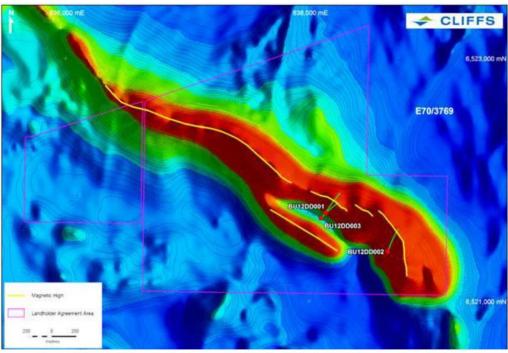
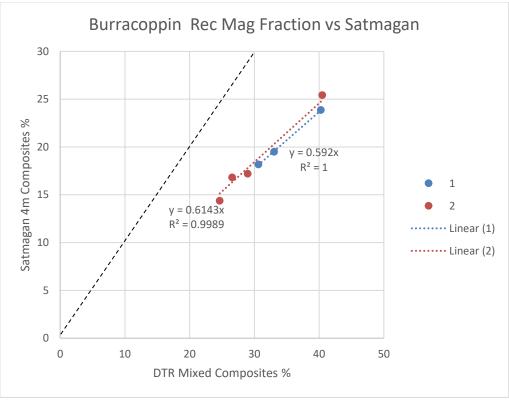


Figure 1 The supplied merged total magnetic intensity grid for the East Burracoppin project area.

H&S CONSULTANTS Pty. Ltd. ABN 72 155 972 080 6/3 Trelawney St, Eastwood, NSW 2122 P | +61 2 9858 3863 E | info@hsconsultants.net.au


www.hsconsultants.net.au

Level 4, 46 Edward St Brisbane, QLD 4000 P | +61 7 3012 9393

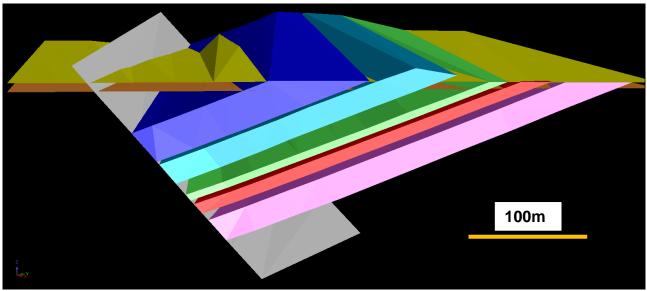
Mineralisation comprises multiple bands of disseminated to semi-massive magnetite interspersed with barren migmatite bands (from centimetres to metres in thickness). The current amount of drilling is insufficient to join up of these bands with any degree of confidence. The bands appear to coalesce forming larger mineral zones which can tentatively be joined along strike.

Oxidation due to surface weathering appears to have penetrated up to 70-80m downhole, approximately 60-65m below surface. There are suggestions from the core photos that the oxidation process may have depleted the magnetite content eg converted it to maghemite or even hematite. Metallurgical testwork has also indicated that oxidation may have impacted the dry bulk density by lowering slightly the average values, but data is inconclusive.

Cliffs analysed for magnetite on 1m samples using the Satmagan apparatus and composited the 1m samples to a 4m, 5m or even 6m interval for Davis Tube analysis for recovered magnetic fraction. A simple check of comparing the average intercept grade for each analytical method for 3 mineral zones from BU12DD001 (excludes the oxide affected sample) and 4 zones in BU12DD002 indicated a linear relationship between both methods although the Satmagan method estimated a magnetite grade 40% lower than the DTR equivalent (see figure below).

(1 = hole BU12DD001; 2 = hole BU12DD002; black dashed line = 1:1)

Rather spectacularly, virtually no mineralisation was intersected between BU12DD001 and BU12DD003 despite the holes being about 50m apart in the down dip direction. Inspection of the lithogeochemical data showed the same 'stratigraphy' for the upper part of the two holes, down to approximately 100-120m (only 30-40m below the base of oxidation), with a relatively shallow dip to the south west. A break in the lithogeochemical stratigraphy at around 120m in BU12DD003 was noted which, when checked with the core photography, is attributed to an annealed fault structure at a very shallow angle to the long core axis (see figure below). A chemically distinct, barren, calcic unit comprising intermediate gneiss, sericite biotite schist and quartz biotite schist helps to provide the 'stratigraphic' control between the two holes. Therefore the 'missing



mineralisation' in BU12DD003 is likely due to an interpreted moderately north east dipping (circa 50°) fault cutting obliquely across the stratabound mineralisation that dips 20° to 212°.

(red lines show fault zone)

The 3D interpretation shown below presents a very simplified shallow south west dipping set of tabular bodies for 600m of strike (see figure below). They are terminated in the south west by the interpreted fault (see above) and in the north east by being exposed at surface. A total of four parallel magnetite zones have been tentatively delineated in holes BU12DD001 and BU12DD002 with the barren zone separating the uppermost unit from the lower three units. No consideration for any internal folding has been taken into account. The combined volume of the mineral solids is approximately 36Mm³ less some of the uppermost mineralisation within the oxide zone which is assumed to be of lower grade and may not constitute economic magnetite mineralisation.

(Magnetite bands = Blue, green, red and purple; Barren unit = cyan; BOCO = yellow, BOPO = brown; Fault = grey) (view looking slightly down to NW)

The base of the purple unit is about 330m below surface. No lateral strike extrapolation of the mineral zones has been made beyond holes BU12DD001 and BU12DD002.

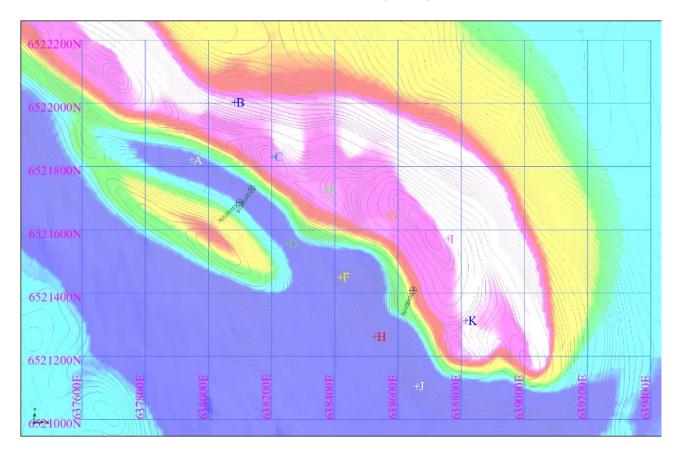
The relatively shallow south west dip to the mineralisation appears to contradict to the dip direction from the MIRA magnetic modelling. The H&SC version is based on the match up in lithogeochemical signature of the banded units in the top of holes BU12DD001 and BU12DD003 and the identification of a shallow angle to core structure in BU12DD003.

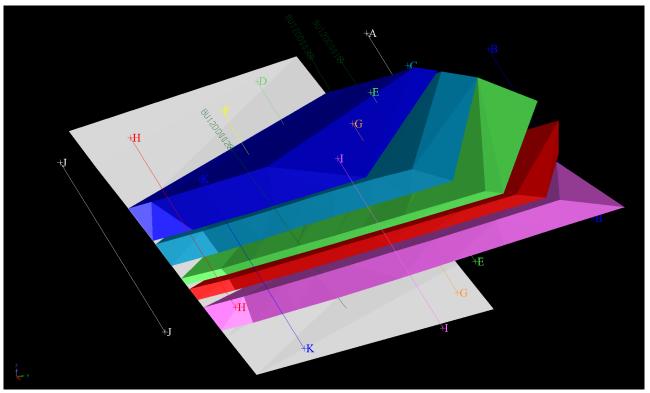
A modest amount of density data was supplied based on air pycnometer readings for 6 composite samples used for the metallurgical testwork, with an average density of 3.18t/m³ being recorded.

Metallurgical testwork has confirmed the recovered magnetic fraction results completed by Cliffs with a slightly better concentrate grade for iron (69 to 71% Fe as opposed to 67 to 70%). It was noted that silica showed some repeatability issues which may have been due to a slight variability in the sample prep process with the testwork. However either set of absolute silica values are considered low enough to not have a significant impact of the saleability of the finished concentrate product. The conclusion from the testwork is that a high grade saleable iron product can be produced.

Using the estimated volumes of the 4 mineral zones and an average density of 3.18t/m³ an Exploration Target can be generated:

100 to 120Mt at a DTR grade of 25-35% to give 25 to 40Mt of magnetite concentrate with a 67 to 71% iron grade and 1-4% SiO₂ with low alumina, phosphorous and sulphur.


The potential quantity and grade of the Exploration Target is conceptual in nature, and there has been insufficient exploration to estimate a Mineral Resource; it is uncertain if further exploration will result in the estimation of a Mineral Resource


Part of H&SC's remit was to design a drill programme that may successfully achieve a target of 20-30Mt of iron concentrate product at Indicated Resource status. From the Exploration Target designed above, infill drilling at 200m centres might achieve this. As a result the following drill plan is proposed. It should be noted that proposed holes A & B and J & K are along strike extension holes designed to provide the option of more fresh material closer to surface if it is required.

Prop_DH	East	North	Elev	Dip	Azimuth	EOH
А	637946.518	6521821.357	385.594	-55	36.75	340
В	638081.723	6522002.419	379.921	-55	36.75	340
С	638202.939	6521830.481	390.322	-55	36.75	340
D	638246.098	6521554.011	389.834	-55	36.75	340
E	638372.289	6521723	391.232	-55	36.75	340
F	638417.686	6521449.528	386.092	-55	36.75	340
G	638563.402	6521644.665	387.179	-55	36.75	340
Н	638527.26	6521261.999	375.974	-55	36.75	340
Ι	638757.709	6521570.607	377.225	-55	36.75	340
J	638659.791	6521105.212	374.083	-55	36.75	340
K	638814.434	6521312.305	370.607	-55	36.75	340
					Total	3,740

A plan of the proposed holes is provided below along with an oblique shot, looking west, of how the planned holes will intersect the interpreted mineral zones. Most intersections are designed to intersect the mineralisation below the base of oxidation (BOPO).

(Unit colours as per previous 3D interpretation image)

It is worth pointing out the proposed drill plan is designed to upgrade the Exploration Target to Indicated and/or Inferred Resource. The Exploration Target is open at both ends and there is considerable exploration potential, particularly evidenced from the airborne magnetic data, to discover additional resources over an additional strike length of at least 2.4km (see figure at beginning of this memo).

The main risk with the infill drill programme is that it will likely become apparent that the geology is considerably more complex than presented in the 3D interpretation with localised internal folding and offset faulting and/or coalescing/bifurcation of magnetite bands and zones. It may be worth considering completing a sub-area with infill drilling on 100m centres to better establish the grade continuity (confidence in the grade continuity is the main driver for the resource classification).

With any planned drilling it is important that appropriate sampling and analytical procedures are designed beforehand for both RC and diamond drilling. It is also important to have a QAQC programme prepared and H&SC can advise on this. H&SC would also recommend compositing drill samples to 4m prior to sample prep and DTR analysis as this would potentially reduce the number samples required and thus reduce costs.

H&SC is aware of RLC's intent to get the CSIRO to reprocess the airborne magnetic data which could be very useful depending on the level of resolution of geological features. In light of the potential change in the interpreted dip direction of the mineral sequence, it might be considered prudent to complete the drill programme prior to further modelling so as to provide more geological control for the modelling and potentially remove some of the ambiguity associated with possible geophysical interpretations. H&SC would also like to point out that the following is from the 2012 JORC Code & Guidelines in relation to using remote magnetic data in defining Mineral Resources:

Geological evidence and knowledge required for the estimation of Mineral Resources must include sampling data of a type, and at spacings, appropriate to the geological, chemical, physical and mineralogical complexity of the mineral occurrence, for all classifications of Inferred, Indicated and Measured Mineral Resources. A Mineral Resource cannot be estimated in the absence of sampling information.

The implication being that it is not allowable to use something like modelled magnetic data as a substitute for 'sampling' grades ie in lieu of drillhole samples with assays. The magnetic data can be used to invoke a level of geological continuity and other relevant geological features, eg a fault termination of mineralisation all of which can have an impact on the resource classification.

One other item to note is that there appears to be no QAQC data with the Cliffs drilling which will impact negatively on the resource classification. Some of this is partially offset by the positive outcomes of the metallurgical testwork. Also bulk density needs to be measured by a more appropriate method than the air pycnometer, which measures specific gravity.

Simon Tear Director and Consulting Geologist H&S Consultants Pty Ltd

JORC Code, 2012 Edition – Table 1 Burracoppin Magnetite Project

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Sampling method comprises 3 diamond drillholes for 995.7m. Drillholes were completed by Cliffs Asia Pacific Iron Ore Pty Ltd ("Cliffs") in 2012. 1m sawn quarter core samples (849 samples) were sent to a commercial laboratory for sample prep and analysis by standard industry XRF techniques. Sample compositing to generally 4m but occasionally higher was completed after the initial sampling and assaying to allow for further analytical testwork on particle liberation and recovered magnetic fraction ("DTR") for magnetite. This work was completed at a second commercial laboratory. Drill holes achieved a high angle of intersection to the mineralisation Mineralisation comprises a 265m thick package of rocks with relatively coarse grained stratabound magnetite in bands ranging in thickness between 13 to 70m. The stratabound mineralisation generates a strong and discrete airborne magnetic anomaly which provides a clear measure of geological continuity and magnetite grade intensity. The sampling technique is considered appropriate for the deposit type
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Cliffs used a Hanjin Powerstar 7000 track mounted diamond drill rig NQ2 diamond drilling (DD) was the preferred sampling technique as it offered substantial geological information at an early stage of the exploration process and the best chance of full sample recovery for a maiden drilling programme.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recoveries for DD were recorded by field technicians after measuring the length of core recovered in metres divided by the length of each individual core run. Minor core loss was recorded with the top of hole but otherwise averaged 99% No studies were undertaken to specifically examine possible biases between core loss and recovered magnetic fraction as there was minimal core loss associated with the mineralisation.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geological and geotechnical logging was completed by contract geologists and field staff supplied by BM Geological Services ("BMGS"), in conjunction with the Cliffs exploration team. The preparation of core samples was handled by BMGS at their facility in Kalgoorlie, completing the measurement and recording of core orientation and RQD, sawing and sampling of the core. Every DD hole was geologically logged but no details of the method used has been supplied. Fields recorded include colour, weathering, regolith, lithology, grain size, foliation, texture, min%, min. style, alteration, alteration intensity, alteration style, vein min, vein%, vein style, sulphide% and description being recorded. Data was supplied to H&SC as a series of Excel files and loaded into an MSAccess database. Logging used a mixture of qualitative and quantitative codes Down-hole geophysical surveying was carried out by Kalgoorlie-based ABIM Solutions with down-hole directional surveys conducted using the SPT 007 42 North Seeking Gyroscope and down-hole magnetic susceptibility surveys conducted using the Geovista Magnetic Susceptibility tool. Potential issues have been reported for the mag sus data so its use has been quantitative. The SATMAGAN magnetic susceptibility method completed as part of the lab analysis has performed much better. Digital core photographs exist for all three holes. All relevant mineralised intersections were logged. Geological logging and multi-element assays were of sufficient detail to allow for the creation of a geological model to support the design of an Exploration Target.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the ir situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material 	 Bureau Veritas' Amdel Laboratory, Perth, were contracted to conduct the LIS applysis on the magnetite RIE complex.

Criteria	JORC Code explanation	Commentary
	being sampled.	 replicate the magnetite processing techniques as utilised in Cliffs US and Canadian operations. The LIS procedure involves submitting ¼ core composites. Each sample undergoes three timed grinds of 3 minutes, 6 minutes, and 12 minutes, and these are screened to indicate percent passing 100, and 200 mesh (150 and 75µm). Davis Tube analyses determine the recovered magnetic fractions ("DTR") from the timed grinds, and XRF assaying was used to determine the concentrate grades No documentation of any QAQC procedures or results was available. Sample prep and analytical procedures appear to be of a reasonable standard industry practice. Based on that assumption all sampling methods and sample sizes are deemed appropriate.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable level of accuracy (ie lack of bias) and precision have been established. 	 Spectrometry ("XRF"). Fe, P, SiO2, Al2O3, MgO, CaO, Mn, S, TiO2, K2O, Cu, Cr, Co, Ni, Zn, V, Pb, As and Zr were determined by XRF. Loss on Ignition was determined between 105 and 950 degrees Celsius. Results are reported on a dry sample basis. Fe3O4 (magnetite) were determined by SATMAGAN
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Subsequent to the work and reporting under Cliffs management on the drill intersections for three drillholes, intervals of the remaining core from significant intersections in BU12DD001 and BU12DD002 were taken by an independent geologist contracted to RLC for metallurgical testwork by Engenium Pty Ltd (an independent consultant). Results of the Engenium testwork confirmed the significant intersections. No site visit was completed by H&SC. Limited core inspection is possible by viewing core photographs and comparing with the assays. While substantial amounts of core from the significant intersections have

Criteria	JORC Code explanation	Commentary
		 been consumed by two separate analysis/testwork programs the remaining core is stored in a yard and is available for inspection. There are no twinned holes A lack of documentation precludes any comment as to whether there were any adjustments to the assay data eg substitution for below detection limits.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Collars were surveyed downhole using an SPT 007 42 North Seeking Gyroscope and thus are considered reasonably accurate. Grid system is MGA94 Zone 50 Supplied topography comprised 25m spaced gridded data, which is sufficient for the definition of an Exploration Target
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 2 of the 3 drillholes have been drilled along approximately 600m of strike. The third hole is in the section plane of the first hole set back by approximately 50m to the south west. Downhole sampling for magnetite was on generally 4m intervals The interpreted geological continuity for the magnetite mineralisation and thus the delineation of the Exploration Target takes into account the drill spacing relative to the style of mineralisation. Samples were composited to 4m for submission for DTR assay.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 H&SC's interpretation of the drilling results includes a lithogeochemical characterisation of the rock units. This interpretation indicated a moderate SW dip to the sequence strata hosting the magnetite mineralisation, in which case the drilling is at a reasonably high angle to the mineralisation and therefore no significant sampling bias exists. Magnetic modelling of the aeromagnetic data by Cliffs suggested an alternative NE dip to the beds. This would suggest that the drilling was subparallel to the beds. This is not supported by the bedding core axis angles and structural contact of the lithological units.
Sample security	The measures taken to ensure sample security.	There is no documentation on sample security
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• There have been no audits or reviews of the work completed by Cliffs, except for the current work completed by H&SC.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Exploration Licence 70/4941, is located near the township of Merredin in southwest Western Australia Registered title holder is Bullamine Magnetite Pty Ltd a wholly owned subsidiary of Reedy Lagoon Corporation Limited ("RLC"), Land ownership is mostly private. Ballardong People Native Title determination application – WAD 6181/1998 is current over all non-private land. E70/4941 was granted on 11/02/2019, land owner agreements have beer executed (August 2019), private property (Lot 61 & 62 on Deposited Plan 404064) has been included into the grant of E70/4941 (covers for the lanc area of the majority of the magnetic anomaly associated with the magnetite deposit), A heritage agreement has been entered into which sets out protocols for clearance surveys required to gain consents for field operations.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The area of E70/4941 was previously held by RLC (E70/3769 - Bullamine Magnetite P/L) from 19/04/2010 to 14/04/2016. Cliffs Asia Pacific Iron Ore P/L executed a farm-in agreement on 11/02/2011 and acted as manager under the terms of the agreement (ASX release 20/10/2010), JV restructure introduced NS Iron Ore Dev. Pty Ltd and Sojitz (ASX release 30/11/2012), JV terminated and tenure and management reverted to RLC (ASX release 17/04/2014). RLC relinquished E70/3769 on 14/04/2016. Exploration during this earlier tenure included: Airborne magnetic, radiometric and gravity surveys (ASX release 22/06/2011) Drilling (diamond, 3 holes for total 995.7m) (ASX release 25/10/2012), core sample assay (ASX release 18/01/2013) Metallurgical (Davis Tube recovery) (ASX release 23/11/2012) Magnetic data for Burracoppin deposit processed and modelled (ASX release 31/01/2013) Metallurgical testwork by Engenium Pty Ltd (ASX release 17/11/2014)
Geology	• Deposit type, geological setting and style of mineralisation.	• E70/494 1is situated in the NE margin of the Archaean Yilgarn Craton,

Criteria	JORC Code explanation	Commentary					
		 and colluvial Where outere occasional national western Gne porphyritic, n Many small of formation, que the younger locally, even a The dominar consisting of adamellite. O appears in metamorpho or enclosed b All the enclave the gneiss. 	entage of t cover. op does of irrow banc eiss Terrain nassive or enclaves of uartzite, an granitoid grained ad nt unit ou medium tutcrop of the centr sed bande y mafic gra res in the g sation con	he tenem ccur it lar ds of mafi n. Most c complext of metam nd pelitic intrusions lamellite. tcropping to coarse strongly r ral-east c d iron-for anulite an gneiss hav	ent (~80%) gely consis c or ultram of the gneis y veined gra orphosed k rocks occu s form plut g in E70/49 g in E70/494 mation. Thi d are wides e been stro	is concealed ts of granite afic rocks for ss is derived anitoid rocks basalt, gabbi r within the ons of seria 941 is an ir eriate, or lo d, foliated, s flas do sm is unit is gene spread in the ongly deform	I beneath alluvial and gneiss with rming part of the from seriate or and migmatite. ro, banded iron- granitoid gneiss. te adamellite or, ntrusive complex cally porphyritic, eriate adamellite nall enclaves of erally adjacent to granitoid gneiss. ed together with ds of magnetite-
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 				by Cliffs in North	•	details below: GridUTM
	\circ easting and northing of the drill hole collar	hole_id BU12DD001	East 638		521728	Elev 390.34	MGA94 50
	 elevation or RL (Reduced Level – elevation above sea level in 	BU12DD001 BU12DD002	63864	-	521728	378.768	
	 metres) of the drill hole collar dip and azimuth of the hole 	BU12DD002 BU12DD003	63809		521409	378.768	MGA94_50 MGA94_50
	 down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the 	0120003	03805	7.5 (52105	303.323	IVIUA94_00
		hole_id	Туре	EOH	Azim	Dip	StartDate
	information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly	BU12DD001	DD	349.4	32.43	-55.01	01-Sep-12
	the understanding of the report, the Competent Person should clearly explain why this is the case.	BU12DD002	DD	339.6	22.03	-54.06	10-Sep-12
		BU12DD003	DD	306.6	47.14	-55.06	18-Sep-12

Criteria	JORC Code explanation	Commentary							
 Data aggregation methods In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	sample con	 In recognition that the mineralisation is a bulk commodity, the bul sample composite intercepts used for the metallurgical testwork are considered more relevant for reporting (for a 150um grind size). 						
	Hole BU12DD001 BU12DD001 BU12DD001 BU12DD002 BU12DD002 BU12DD002	Sample 1.1 1.2 1.3 2.1 2.2 2.3	From 54.2 97.9 213 54.9 236.85 264.4	To 68.9 140.8 304.7 128.6 251.2 299	Interval 14.7 42.9 91.7 73.7 14.4 34.6	Mass kg 59.1 129.6 259.2 195.2 43.9 107.8	Total Fe % 21.1 27.7 21.5 17.2 24.5 28.3		
		Hole BU12DD001 BU12DD001 BU12DD001 BU12DD002 BU12DD002 BU12DD002	Sample 1.1 1.2 1.3 2.1 2.2 2.3 Total/Ave	Interva 14.7 42.9 91.7 73.7 14.4 34.6 2 272.0	I DTR 9 24.9 40.2 30.6 24.6 32.5 40.5 31.5	68. 69. 68. 67. 70. 70.	1 8 8 4 8 2 0 0	D2 Con % 2.98 2.18 3.63 3.85 1.63 2.08 3.10	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The drillholes have intersected the stratabound mineralisatio relatively high angle. 				sation at			
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See accompanying report for hole locations							
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	See accompanying report for hole locations							

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Airborne magnetic and radiometric survey flown by Fugro in 2011 (nominal terrain clearance 35 m, Traverse Line: spacing 50 m, direction 090 – 270 deg, Tie Lines: spacing 500m, direction 000 – 180 deg) clearly defines the dimensions and intensity of a significant magnetic anomaly at Burracoppin. Metallurgical testwork programme completed by Engenium in 2014 confirms that the magnetite mineralisation can easily be beneficiated to a high quality iron concentrate.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 A major, staged, infill drill programme is required to define a Mineral Resource between the two productive drillholes.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 An MSAccess database was compiled by H&SC from data supplied by RLC. Limited validation of database was undertaken by H&SC to ensure the drill hole database is internally consistent. Validation included checking that no assays, density measurements or geological logs occur beyond the end of hole and that all drilled intervals have been geologically logged. The minimum and maximum values of assays and density measurements were checked to ensure values are within expected ranges. Further checks include testing for duplicate samples and overlapping sampling or logging intervals. The data was found to be of a sound nature suitable to produce an Exploration Target. RLC is taking responsibility for the accuracy and reliability of the data used to design the Exploration Target. The MSAccess database was linked to the Surpac mining software to complete 3D visualisation and geological interpretation.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Geof Fethers, Managing Director of RLC has completed site visits to the property. The visits were for reconnaissance and conducted prior to the 2012 drilling. No site visit has been undertaken by H&SC due to time and budgetary constraints including COVID19 travel restrictions.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 No Mineral Resources have been generated The magnetite mineralisation is stratabound with a marked magnetic signature. The downhole geophysical data has been used in conjunction with the Satmagan grades, geological logging and lithogeochemical data to allow for the generation of a set of 3D wireframes representing 4 parallel mineral units and one distinct interstitial barren unit.; some cursory geological controls have been developed including an interpreted faulted south western margin to the mineral units. The 3D interpretation presents a very simplified shallow, south west dipping set of tabular bodies for 600m of strike. They are terminated down dip by an interpreted fault and in the north east by being exposed at surface.

Criteria	JORC Code explanation	Commentary
		 The four parallel magnetite zones have been tentatively delineated in holes BU12DD001 and BU12DD002 with the barren zone separating the uppermost unit from the lower three units. No consideration for any internal folding has been taken into account. The lithological interpretation is therefore relatively simple and reasonably well constrained by the drilling and the high amplitude magnetic anomaly. H&SC notes that alternative interpretations of the mineralised zones and fault are possible but consider the wireframes to adequately approximate the locations of the mineralised zones for the purposes of an Exploration Target. Alternative interpretations may exist.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 No Mineral Resources have been generated The Exploration Target has a strike length of around 600m with a down dip extent ranging between 200 to 800m (depending on which zone). The plan width of the resource averages 450m. Mineral band thickness ranges from 13 to 73m. The upper limit of the mineralisation occurs at surface and the lower limit of the reported Exploration Target is limited to a depth of 330m below surface.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. 	No Mineral Resources have been generated.

Criteria	JORC Code explanation	Commentary
	• The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	• Assumed density value for the Exploration Target is for dry tonnes.
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	• H&SC has assumed a nominal cut-off of 10% DTR is appropriate for the intended bulk mining approach.
Mining factors or assumptions	• Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 The Exploration Target has been designed with the assumption that the material is to be mined by open pit using a bulk mining method. Minimum mining dimensions are envisioned to be around 25m x 10m x 10m (strike, across strike, vertical respectively). The geometry of the interpreted mineral zones is considered favourable for open pit extraction. In 2019 RLC identified that a new smelting process, Hismelt, would enable the project to produce pig iron in preference to selling concentrate into the iron ore market. HIsmelt is a recently developed innovative smelting process capable of using the coarse Burracoppin concentrate as direct feed thus significantly reducing processing costs. Production of high-quality pig iron is being assessed.
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 A testwork programme to develop some design parameters and potential concentrate processing was developed and performed at the Bureau Veritas Laboratory in Canning Vale, WA Engenium was asked to metallurgically assess samples from the two main drill holes to test the process potential of producing a saleable magnetite concentrate as quickly and economically as possible. The outcomes indicated excellent beneficiation of these samples for a relatively coarse grind. Other conclusions from the Engenium work indicated that the concentrate product can be sold at a stage convenient for transport and handling with the confidence that it can be upgraded at a buyer's convenience with minimal loss of iron units. The comminution testing showed a quite abrasive ore. The Abrasive Index results are high enough to require some close consideration of wear materials, chute and drop box design to minimise wear and the ore's contact with wearing surfaces.

Criteria	JORC Code explanation	Commentary
		• The BBWi testwork has resulted in low (10-12 kWhr/t) energy consumption data, which is an encouraging result.
Environmen- tal factors or assumptions	• Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 The deposits lie in flat open country typical of south western WA. Predominantly scrub vegetation that allows for sheep grazing. There are large flat areas for waste and tailings disposal Small number of creeks with only seasonal flows
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Density testing was conducted on the LIS composites. A modest amount of density data was collected using an air pycnometer to complete readings for the 6 composite samples used for the metallurgical testwork The average dry density for fresh rock material is 3.18t/m³.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 No Mineral Resources have been generated. However, an Exploration Target has been delineated. H&SC believes the confidence in tonnage and grade ranges for the Exploration Target, along with the implied continuity of geology and magnetic intensity associated with the airborne magnetic anomaly and the distribution of the data reflect the Exploration Target classification. The classification appropriately reflects the Competent Person's view of the deposit. H&SC has not assessed the reliability of input data.
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	No Mineral Resources have been generated.
Discussion of relative accuracy/ confidence	• Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not	 No Mineral Resources have been generated. The relative accuracy and confidence level in the Exploration Target are considered to be in line with the generally accepted accuracy and confidence of the nominated Exploration Target category. This has been

Criteria	JORC Code explanation	Commentary
	 deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 determined on a qualitative, rather than quantitative, basis, and is base on the Competent Person's experience with similar deposits. No mining of the deposit has taken place so no production data is available for comparison.