

# Encouraging lithium grades, LCT pathfinders and REEs identified at Southern Gold Projects

Southern Gold Limited (ASX: SAU) (Southern Gold or the Company) is pleased to provide an update on exploration activities across its lithium (Li) and Chungju rare-earth element (REE) projects in South Korea.

### Highlights

- Reconnaissance exploration conducted across Li Projects and Chungju REE Project, adding three more Li projects with historical Li occurrences to SAU's portfolio.
- Rock-chip samples returned >1% Li<sub>2</sub>O at Seobyeok Li Project and 0.3% Li<sub>2</sub>O at SAU's new Danyang Li Project.
- Geochemical analysis of granites suggests favourable Li fertility and fractionation indicators for the formation of Li-Caesium-Tantalum (LCT) pegmatites across multiple SAU Li projects.
- Rock-chip samples from the Chungju REE project returned up to 1.4% total rare earth oxide (TREO), confirming the western extension of the Eorae San REE deposit into SAU tenements, defining an 8 km+ mineralized trend with significant REE enrichment.
- Regional stream-sediment samples up to 0.16% TREO associated with radiometric highs at Chungju, provide compelling new REE targets.
- Ongoing exploration efforts include follow-up sampling and mapping in areas with encouraging geochemical results and further reconnaissance exploration in unexplored areas across our portfolio.

### Southern Gold Managing Director Robert Smillie said:

"Our initial Li exploration program is off to an excellent start, yielding encouraging results and highly favourable geochemical indicators for the formation of LCT pegmatites. Furthermore, the inclusion of new projects in our Li exploration portfolio, identified through extensive targeting efforts by our team, underscores the tremendous lithium potential in South Korea.

"Exploration at our Chungju REE Project has returned significant TREO results, confirmed extension of the Eoare San deposit into southern Gold's ground, and highlighted the potential scale of the mineralised system.

"In the coming weeks, our team will be diligently following up on these exciting findings with focused mapping and sampling programs, while also maintaining our commitment to uncovering new target opportunities through regional fieldwork."

### **Lithium Projects**

In April 2023, Southern Gold announced exploration licence applications for Li across a number of key projects in South Korea<sup>1</sup>. The project areas were identified after a country-wide prospectivity study by consultancy RSC highlighting prospective geology including granites and pegmatites, and Li stream-sediment anomalies from a survey by Korea Institute of Geoscience and Mineral Resources (KIGAM).

<sup>&</sup>lt;sup>1</sup> See ASX announcement from 27<sup>th</sup> April 2023 entitled "Southern Gold develops new lithium exploration portfolio in South Korea". Competent Person: Dr Michael Gazley



The company has since completed a further data review which has led to addition of the Dangyang, Seosan and Cheongpyeong projects to its Li exploration portfolio. Historical records suggest Li-bearing pegmatite and aplite may occur in these areas, and 73 new licence applications totalling  $\sim$ 200 km<sup>2</sup> have been applied for. Exploration at Buyeo and Cheongsong<sup>1</sup> returned negative results, and these areas have been dropped. The company's total Li portfolio now stands at six projects covering 383.8 km<sup>2</sup> (Figure 1).

#### **Fieldwork & Analysis**

An important exploration tool in the search for LCT pegmatites is the identification of fertile parent granites. Additionally, within fertile intrusives, a very high degree of fractionation is crucial for concentrating highly incompatible elements such as Li, Cs and Ta. According to Cerny (1989) and Selway et al. (2005), granites/pegmatites with a Mg/Li <30 are highly fertile<sup>23</sup>. Also, Nb/Ta is an important fractionation indicator, with values  $\leq 8$  indicative of highly fractionated rock, as is a K/Rb <150<sup>4</sup>.

Southern Gold has completed an initial round of fieldwork at each of its Li projects, and geochemical results have now been received. A fertility and fractionation analysis has also been completed on pegmatite and granite samples. This work has returned encouraging results, as outlined below and in Appendix 1.

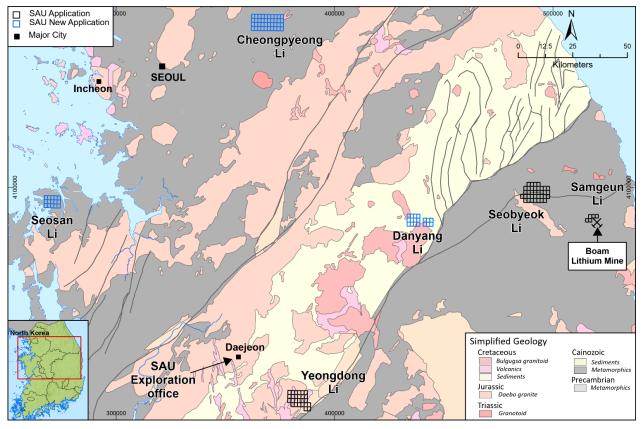



Figure 1: Southern Gold's Li projects - new exploration license applications in blue.

#### **Fieldwork & Analysis**

<sup>&</sup>lt;sup>2</sup> Cerny, P. (1989) 'Exploration strategy and methods for pegmatite deposits of tantalum', in Lanthanides, Tantalum and Niobium, Springer-Verlag, New York, pp. 274-302

<sup>&</sup>lt;sup>3</sup> Selway, J., Breaks, F., & Tindle, A. (2005), 'A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for Superior Province, Canada and Large Worldwide Tantalum Deposits', Canadian Institute of Mining, Metallurgy and Petroleum, vol.14, no.1-4, pp.1-30

<sup>&</sup>lt;sup>4</sup> Steiner, B. (2019) Tools and workflows for grassroots LCT pegmatite exploration. Minerals 9 no.8: 499



The Samguen project is located ~2 km northwest of the historical Boam Li mine, which was mined for spodumene and lepidolite in pegmatite hosted in the Yulri Formation and Janggun Limestone<sup>5,6</sup> (Figure 2). Reconnaissance work by Southern Gold geologists has identified numerous zones of pegmatite and broad areas of amphibolite-facies metasediments, considered an ideal host for pegmatite emplacement<sup>7</sup> (London, 2019). Several pegmatites returned anomalous Li, and encouragingly, Mg/Li, Nb/Ta and K/Rb suggestive of both a lithium fertile and a highly fractionated system (Table 1).

The maximum value of 0.32% Li<sub>2</sub>O was from a metasedimentary rock in close contact with pegmatite. The results occur within broad zones of strongly anomalous Li from stream-sediment sampling<sup>1</sup>. Further field work within this area is planned to confirm whether LCT pegmatite bodies are present.

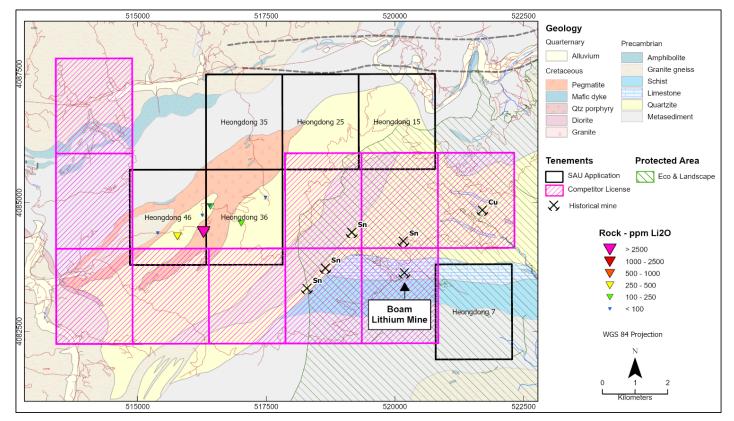



Figure 2: Samguen Li Project exploration licence applications<sup>8</sup> and rock chip sample results.

<sup>&</sup>lt;sup>5</sup> Choi Y.-H., Park Y.-R. and Noh J.H. (2014) Genesis of Boam Lithium Deposits in Wangpiri, Uljin. Geological Journal, 50 (4), pp.489–500 (in Korean).

<sup>&</sup>lt;sup>6</sup> Oh I.-H., Yang S.-J., Heo C.-H., Lee J.-H., Kim E.-J., and Cho, S.-H. (2022) Study on the Controlling Factors of Li-Bearing Pegmatite Intrusions for Mineral Exploration, Uljin, South Korea. Minerals, 12(5), p.589.

<sup>&</sup>lt;sup>7</sup> London, D. (2019) 'Ore forming processes within pegmatitic granites', Ore Geology Reviews, vol.101, pp.349-383

Selway, J., Breaks, F., and Tindle, A. (2005) 'A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for Superior Province, Canada and Large Worldwide Tantalum Deposits', Canadian Institute of Mining, Metallurgy and Petroleum, vol.14, no.1-4, pp.1-30

<sup>&</sup>lt;sup>8</sup> Prior to January 2011 all South Korean tenements were granted under the Tokyo Datum, after which time the WGS84 Datum was used. This results in a partial overlap of SAU applications over adjacent tenements granted before January 2011. Any overlapping application areas will be excised from SAU licences by the Mine Registration Office (MRO) upon licence grant if the underlying granted tenement includes the same mineral applied for.



| Sample ID | Туре    | Lithology | Li₂O ppm | Mg/Li | Nb/Ta | K/Rb |
|-----------|---------|-----------|----------|-------|-------|------|
| KRS510949 | Outcrop | Phyllite  | 3229     | -     | -     | -    |
| KRS511710 | Outcrop | Pegmatite | 581      | -     | 3     | 53   |
| KRS510950 | Outcrop | Pegmatite | 215      | -     | 3     | -    |
| KRS510968 | Outcrop | Pegmatite | 129      | 6     | 6     | 57   |
| KRS510948 | Outcrop | Pegmatite | 107      | -     | 1     | -    |
| KRS510951 | Outcrop | Pegmatite | 108      | -     | 5     | -    |

 Table 1: Significant results and fertility/fractionation indicators from Samguen rock chips.

#### **Seobyeok Li Project**

The Seobyeok Li Project includes 36 exploration licence applications covering 98.8 km<sup>2</sup>, in an area comprising Precambrian schists, gneiss, and limestone, with pegmatites mapped by KIGAM located throughout the application area (Figure 3). Data from a historical KIGAM stream-sediment survey has high values in the project area and the project is ~10 km northeast of mapped Jurassic granite, which could be a potential for the Li pegmatites.

Recent fieldwork by Southern Gold included geological reconnaissance and rock-chip sampling. Several pegmatite and granitic bodies were identified occurring in a metasedimentary host. Results include 1.1% Li<sub>2</sub>O and 0.14% Li<sub>2</sub>O, both occurring in metamorphic rock in close contact with granite (Table 2). Significantly, many of the pegmatite and granite intrusions sampled at Seobyeok have prospective Mg/Li, Nb/Ta and K/Rb values, which suggests that the granite was sufficiently fractionated for the formation of LCT pegmatites (Table 2).

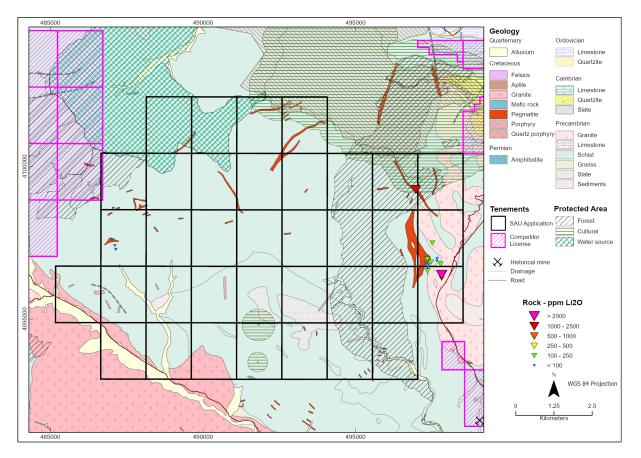



Figure 3: Seobyeok Li Project first-pass rock chip sampling results.



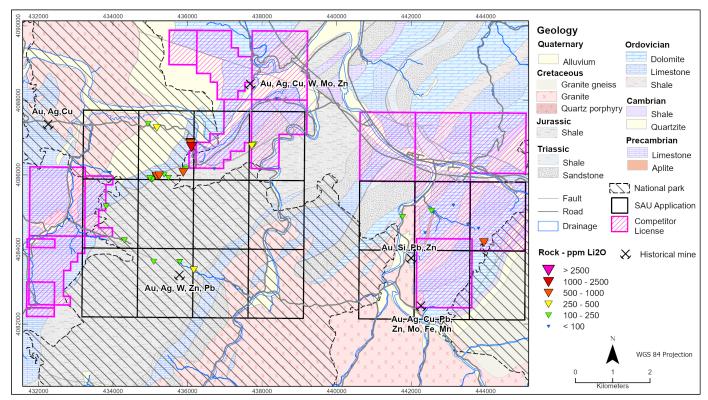
| Sample ID | Туре    | Lithology | Li₂O ppm | Mg/Li | Nb/Ta | K/Rb |
|-----------|---------|-----------|----------|-------|-------|------|
| KRS510992 | Outcrop | Schist    | 11259    | -     | -     | -    |
| KRS511702 | Outcrop | Phyllite  | 1378     | -     | -     | -    |
| KRS511703 | Outcrop | Pegmatite | 258      | 4     | 11    | 59   |
| KRS510993 | Float   | Pegmatite | 129      | 16    | 9     | 115  |
| KRS511704 | Float   | Pegmatite | 129      | 4     | 8     | 71   |
| KRS511701 | Subcrop | Granite   | 108      | 19    | 7     | 133  |
| KRS511705 | Outcrop | Granite   | 108      | 5     | 6     | 83   |

Table 2: Significant results and fertility/fractionation indicators from Seobyeok rock-chips.

The company considers these early geological and geochemical results to be proof of concept. There is scope for further significant discoveries given several individual pegmatites have been mapped by KIGAM across the project area, with the majority of which are yet to be investigated. Large zones of strongly anomalous Li in historical stream-sediment sampling up to several hundred ppm also occur<sup>1</sup>. Southern Gold is planning a substantial program of further reconnaissance mapping and sampling work across the Seobyeok tenement package.

#### **Danyang Li Project**

The newly acquired Danyang project comprises 18 tenement applications and totals ~48 km<sup>2</sup> (Figure 4). Many of the applications are coincident with a national park; however, Southern Gold understands that the South Korean tenement system has provision to grant licences in such areas and will follow due process with the Mine Registration Office. Southern Gold considers Danyang highly prospective for Li-bearing pegmatite and aplite, with two historical Li mines are documented to occur in the region.


Early reconnaissance work by Southern Gold has reinforced the strong potential of the Danyang project. Twelve samples grading >500ppm Li<sub>2</sub>O, with a maximum result of 0.31%, predominantly within Li-mica bearing aplite. Lithium fertility and fractionation indicators are particularly strong at Danyang, with a broad suite of samples with extremely low Mg/Li, Nb/Ta and K/Rb values, indicative of a highly fractionated system. Strongly anomalous Cs, and Ga also occur in some samples, along with elevated Rb (Table 3).

These early results from Danyang are extremely encouraging and the company believes there is strong potential for LCT pegmatite occurrences in this area. Follow-up sampling and mapping are planned to further investigate the large area of applications that the company holds.

| Sample ID | Туре    | Lithology | Li₂O ppm | Cs  | Ga | Rb   | Mg/Li | Nb/Ta | K/Rb |
|-----------|---------|-----------|----------|-----|----|------|-------|-------|------|
| KRS511783 | Float   | Aplite    | 3078     | 177 | 33 | 1880 | -     | 1     | 12   |
| KRS511782 | Float   | Aplite    | 1098     | 36  | 32 | 411  | 1     | 2     | 8    |
| KRS511779 | Outcrop | Aplite    | 753      | 50  | 27 | 989  | -     | 3     | 31   |
| KRS511768 | Float   | Breccia   | 732      | 10  | 22 | 79.6 | 31    | 19    | 184  |
| KRS511786 | Outcrop | Granite   | 732      | 50  | 28 | 1065 | -     | 3     | 42   |
| KRS511778 | Outcrop | Aplite    | 710      | 51  | 22 | 1115 | -     | 4     | 31   |
| KRS511784 | Float   | Aplite    | 710      | 63  | 29 | 1250 | -     | 4     | 30   |
| KRS511767 | Mullock | Aplite    | 646      | 14  | 42 | 1275 | 2     | 1     | 21   |
| KRS511732 | Mullock | Limestone | 624      | 20  | 17 | 215  | -     | -     | -    |
| KRS511777 | Outcrop | Aplite    | 560      | 51  | 22 | 957  | 1     | 5     | 28   |
| KRS511781 | Float   | Aplite    | 538      | 43  | 31 | 1445 | 6     | 1     | 31   |

Table 3: Significant results and fertility/fractionation indicators from Danyang rock chips





**Figure 4:** Rock-chip sampling at the Dangyang Li project. Note that licence applications are largely within a National Park; however, Southern Gold understands that there are provisions for granting licences in such areas and will follow due process with the Mine Registration Office (MRO).

#### Cheongpyeong, Seosan & Yeongdong Li Projects

Cheongpyeong and Seosan are newly acquired projects for the company, consisting of 55 licence applications across nearly 150 km<sup>2</sup>. A recent review of historical data suggests Li-bearing pegmatites may occur in these areas. Yeongdong is a previously announced<sup>9</sup> group of 26 licence applications totalling ~70 km<sup>2</sup> and covering an area of anomalous stream-sediment geochemistry.

The company has received results from first pass rock-chip sampling programs at Cheongpyeong, Seosan and Yeongdong. The Li contents of rock chips from the reconnaissance sample programme were generally low (Figures 5, 6 & 7, Table 4).

Large areas of the tenement application package for each project remain to be investigated and the company believes significant potential remains. Further fieldwork is planned over the coming Autumn season.

| Project      | Sample ID | Туре    | Lithology | Li <sub>2</sub> O ppm |
|--------------|-----------|---------|-----------|-----------------------|
| Seosan       | KRS511797 | Outcrop | Dyke      | 323                   |
| Yeongdong    | KRS511717 | Outcrop | Mudstone  | 194                   |
| Yeongdong    | KRS511724 | Outcrop | Granite   | 151                   |
| Seosan       | KRS509111 | Outcrop | Dyke      | 129                   |
| Cheongpyeong | KRS510311 | Outcrop | Pegmatite | 129                   |
| Seosan       | KRS509110 | Outcrop | Dyke      | 108                   |

Table 4: Significant results from Cheongpyeong, Seosan & Yeongdong rock-chips

<sup>&</sup>lt;sup>9</sup> See ASX announcement from 27<sup>th</sup> April 2023 entitled "Southern Gold develops new lithium exploration portfolio in South Korea". Competent Person: Dr Michael Gazley



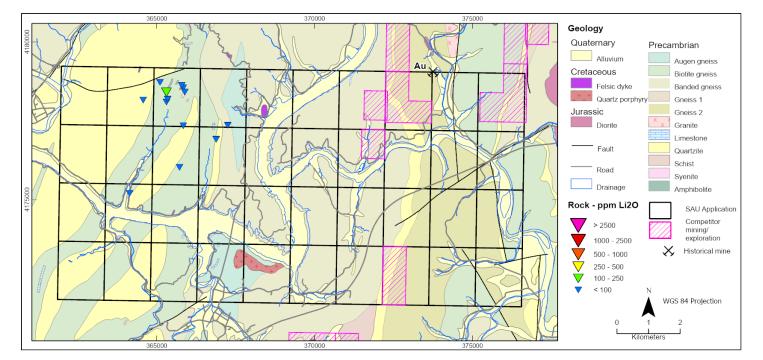



Figure 5: Rock-chip samples at the Cheongpyeong Li project.

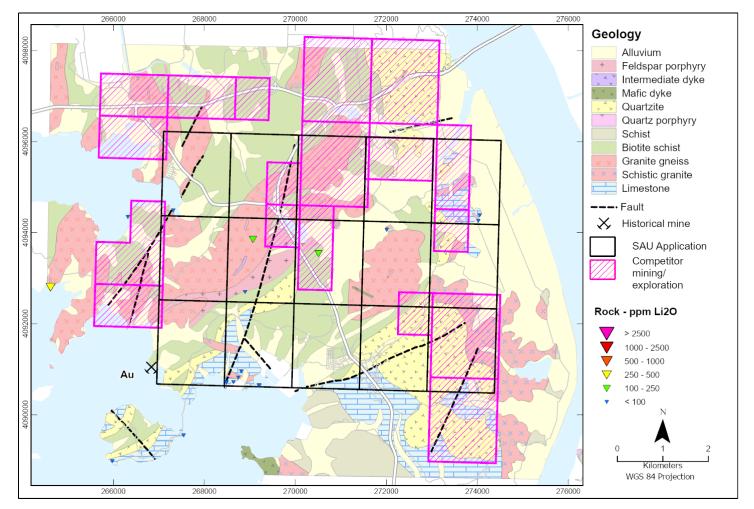



Figure 6: Rock-chip samples at the Seosan Li project.



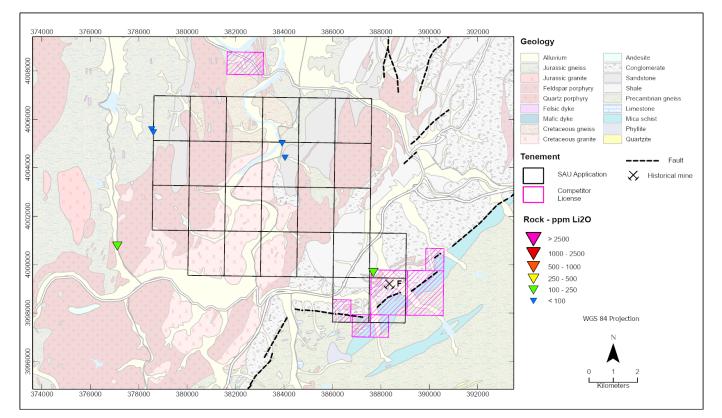



Figure 7: Rock-chip samples at the Yeongdong Li project.

### **Chungju REE Project**

The Chungju project area was identified in a report by consultancy RSC as being prospective for REE mineralisation. It is adjacent to the well-documented Eorae San REE deposit, a NE–SW striking,  $\sim$ 2 km long, faulted REE mineralised body held by a third party, which is hosted in a trachytic syenite intruding an alkali granite precursor.<sup>10</sup>

Southern Gold has recently extended its tenement application area at Chungju. The company's tenement package now includes 30 exploration licence applications covering an area of  $\sim$ 80 km<sup>2</sup> (Figure 8). Analyses have been returned from a widespread program of surface sampling. A total of 114 rock-chip and 40 stream-sediment samples were taken. Highlights from the program include:

- Nearly a quarter of all rock-chip samples had ≥0.5% TREO, with a maximum of 1.4% TREO;
- Strong heavy REE enrichment, with an average of 30% HREO in mineralised samples (≥0.5% TREO); and
- Anomalous stream-sediment samples up to 0.16% TREO, predominantly in a new underexplored area to the east.

Immediately west of the Eorae San REE deposit, a group of rock-chips from outcropping syenite have >0.5% TREO (Figures 8, 9), confirming extension of the deposit into Southern Gold tenements. To east, several areas of sampling define large zones of >0.2% TREO, with rock-chips from an alkaline igneous body have up to 1.4% TREO (Figure 8, 10). These results, together with large areas of anomalous thorium (Th) in a KIGAM radiometrics survey<sup>10</sup>, indicate a potential 8 km+ mineralised trend extending across the company's tenement applications and coincident with the Eorae San mineralisation (Figure 8).

<sup>&</sup>lt;sup>10</sup> See ASX announcement from 8<sup>th</sup> March 2023 entitled "Southern Gold applies for Exploration Licences adjacent to REE deposits in South Korea – fieldwork underway". Competent Person: Dr Michael Gazley



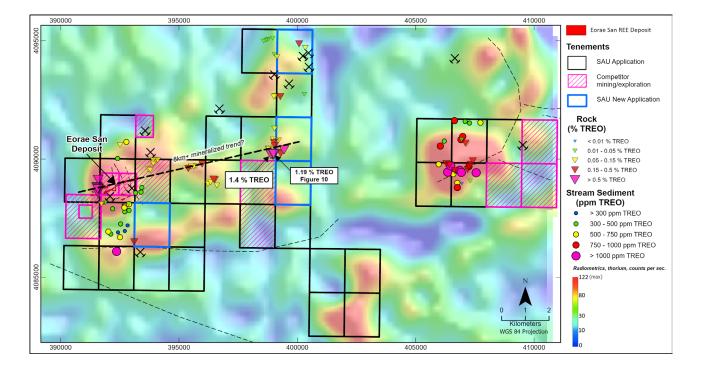
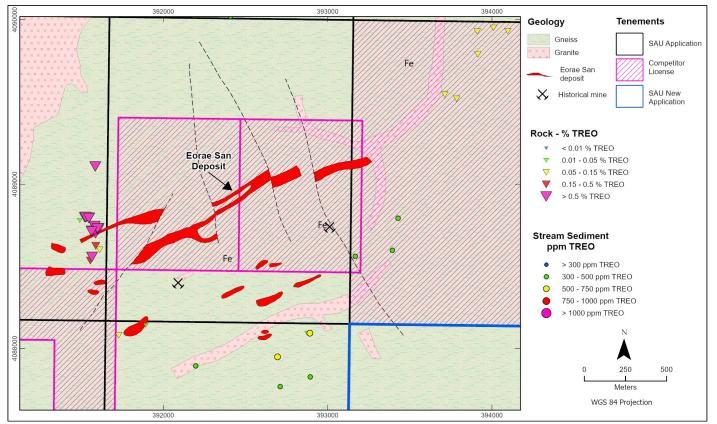




Figure 8: Chungju REE project showing rock-chip and stream-sediment results on thorium radiometric background.



**Figure 9:** Close-up map of Southern Gold's rock-chip samples around the Eorae San deposit, which highlight the extension of mineralisation onto Southern Gold's tenement applications.





Figure 10: Banded syenite from Chungju with 1.19% TREO (sample ID KRS513223).

Stream-sediment sampling by Southern Gold has also highlighted the prospectivity of a group of tenement applications in the far east of the project area. Here, several samples have returned >0.1% TREO in a zone situated within a broad Th anomaly. Limited rock-chip sampling in this region has confirmed the presence of mineralised syenite similar to other parts of the project, with grades up to 0.43% TREO (Figure 8).

The company views this first round of results at Chungju as highly encouraging, and indicative of a large, widespread mineralised REE system with the advantage of HREO enrichment. Follow-up mapping and sampling is planned and will aim to further extend and define the identified mineralisation.

### **Next Steps**

Exploration across Southern Gold's Li projects and at Chungju is ongoing and will include follow-up sampling and mapping at new discoveries and further reconnaissance exploration to generate additional targets. This is expected to comprise of mostly rock-chip sampling and geological mapping. The work will aim to both investigate the unexplored portions of the company's tenement application package, and further define the newly discovered mineralisation noted in this release.

Authorised for release by the Board of Southern Gold Limited.

#### **Further Information**

Robert Smillie MD & CEO 08 8368 8888 info@southerngold.com.au Simon Pitaro Investor and Media Relations +61 (0) 409 523 632 spitaro@nwrcommunications.com.au



#### **Southern Gold Limited: Company Profile**

Southern Gold is a successful mineral exploration and battery technology commercialisation group listed on the Australian Securities Exchange (under ASX ticker "SAU"). The mineral exploration business includes 100% interest in a substantial portfolio of REE, Li and precious metals exploration projects in South Korea. Backed by a first-class technical team, Southern Gold's aim is to find world-class deposits in a jurisdiction that has seen very little modern exploration. The technology commercialisation business holds three exclusive world-wide licences comprising the next generation battery technologies comprising 1) an enhanced performance non-flammable lithium-ion based battery, 2) a low-cost, environmentally sustainable method for recycling lithium batteries, and 3) a low-cost, high cycle life water-based battery.

NORTH KOREA

#### **Competent Person's Statement**

The information in this report that relates to Exploration Results is based on information compiled under the supervision of Dr Michael Gazley, a Competent Person who is a Member of The AusIMM and a Member of the AIG. Dr Gazley is employed by RSC as General Manager Geoscience. The full nature of the relationship between Dr Gazley and Southern Gold has been declared, including any issue that could be perceived by investors as a conflict of interest. Dr Gazley has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity he has undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for the Reporting of Mineral Resources and Ore Reserves. Dr Gazley consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

#### **Reference to Previous Announcements**

Previous SAU exploration and historical streamsediment sampling results referred to in this announcement have been previously announced to the ASX, as specified in footnotes 1 and 10. The announcements are available to the public at https://southerngold.com.au/investors/asxannouncements/.

https://wcsecure.weblink.com.au/pdf/SAU/02641110.pdf https://wcsecure.weblink.com.au/pdf/SAU/02658284.pdf

SEOUL Bessen Option Option Bessen Option Opt

The Company is not aware of any new information or data that materially affect the referenced information included here. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified.

#### **Forward-looking statements**

Some statements in this release regarding estimates or future events are forward looking statements. These mayinclude, without limitation:

- Estimates of future cash flows, the sensitivity of cash flows to metal prices and foreign exchange rate movements.
- Estimates of future metal production; and
- Estimates of the resource base and statements regarding future exploration results.

Such forward looking statements are based on a number of estimates and assumptions made by the Company and its consultants in light of experience, current conditions and expectations of future developments which the Company believes are appropriate in the current circumstances. Such statements are expressed in good faith and believed tohave a reasonable basis. However, the estimates are subject to known and unknown risks and uncertainties thatcould cause actual results to differ materially from estimated results.

All reasonable efforts have been made to provide accurate information, but the Company does not undertake anyobligation to release publicly any revisions to any "forward-looking statement" to reflect events or circumstancesafter the date of this presentation or ASX release, except as maybe required under applicable laws. Recipients should make their own enquiries in relation to any investment decisions from a licensed investment advisor.



## Appendix 1: Geochemical analysis of main relevant elements at lithium projects (>100ppm Li<sub>2</sub>O)

| Sample ID | Easting | Northing | Project      | Lithology | Li <sub>2</sub> O | Cs    | Та   | Sn   | Ga   | Nb    | Rb    | K/Rb | Mg/Li | Nb/Ta |
|-----------|---------|----------|--------------|-----------|-------------------|-------|------|------|------|-------|-------|------|-------|-------|
|           |         |          |              |           | ррт               | ррт   | ррт  | ррт  | ррт  | ррт   | ррт   |      |       |       |
| KRS510311 | 365308  | 4178389  | Cheongpyeong | Pegmatite | 129               | 8.88  | 1.9  | 7    | 18.7 | 10.75 | 170   | 244  | 139   | 6     |
| KRS510959 | 504206  | 4014195  | Cheongsong   | Siltstone | 108               | 5.08  | 0.8  | 67.8 | 16.4 | 11.65 | 50.3  | 0    | 0     | 15    |
| KRS511728 | 442550  | 4085027  | Danyang      | Granite   | 129               | 18.15 | 9.6  | 9.1  | 22.8 | 45.7  | 540   | 65   | 17    | 5     |
| KRS511731 | 441767  | 4084862  | Danyang      | Granite   | 129               | 16    | 4.9  | 3.8  | 17.5 | 38    | 426   | 90   | 12    | 8     |
| KRS511732 | 443953  | 4084170  | Danyang      | Limestone | 624               | 20.1  | 1.6  | 8.9  | 16.5 | 20.7  | 215   | 229  | 312   | 13    |
| KRS511735 | 437694  | 4087519  | Danyang      | Phyllite  | 108               | 7.77  | 1.4  | 4.1  | 18   | 15.3  | 133.5 | 213  | 217   | 11    |
| KRS511737 | 437792  | 4086815  | Danyang      | Limestone | 215               | 20.3  | 1.5  | 8.5  | 27.4 | 16.05 | 247   | 162  | 128   | 11    |
| KRS511738 | 437724  | 4086762  | Danyang      | Schist    | 280               | 25.9  | 1.4  | 13.9 | 28   | 14.7  | 288   | 146  | 89    | 11    |
| KRS511739 | 437480  | 4086644  | Danyang      | Phyllite  | 215               | 23.7  | 1.5  | 9.8  | 21.4 | 16.75 | 223   | 150  | 65    | 11    |
| KRS511741 | 436354  | 4086179  | Danyang      | Phyllite  | 280               | 21    | 1.3  | 6    | 25.4 | 18.15 | 273   | 124  | 51    | 14    |
| KRS511742 | 434938  | 4087357  | Danyang      | Granite   | 237               | 10.75 | 5.8  | 3.4  | 19.3 | 33.5  | 428   | 89   | 4     | 6     |
| KRS511743 | 435177  | 4087248  | Danyang      | Limestone | 258               | 6.09  | 1.3  | 4.7  | 23   | 16.25 | 189   | 214  | 205   | 13    |
| KRS511746 | 436178  | 4086222  | Danyang      | Schist    | 387               | 28.5  | 1.6  | 12   | 25.7 | 19    | 393   | 104  | 36    | 12    |
| KRS511748 | 433106  | 4084470  | Danyang      | Limestone | 474               | 9.99  | 1.1  | 21.8 | 17.6 | 14.55 | 260   | 150  | 103   | 13    |
| KRS511749 | 434306  | 4084233  | Danyang      | Schist    | 108               | 13    | 0.9  | 2.7  | 18.8 | 11    | 207   | 153  | 65    | 12    |
| KRS511750 | 435093  | 4083658  | Danyang      | Schist    | 129               | 8.4   | 1.5  | 5.5  | 24.1 | 19.1  | 196.5 | 178  | 58    | 13    |
| KRS511751 | 435789  | 4083655  | Danyang      | Sandstone | 108               | 7.07  | 0.9  | 1.8  | 10.6 | 8.26  | 107   | 164  | 21    | 9     |
| KRS511752 | 436168  | 4083438  | Danyang      | Schist    | 301               | 41    | 1.9  | 2.1  | 24.2 | 27.9  | 447   | 176  | 48    | 15    |
| KRS511758 | 435966  | 4086155  | Danyang      | Schist    | 151               | 11.7  | 1.5  | 5.7  | 28.4 | 18.55 | 202   | 189  | 109   | 12    |
| KRS511759 | 435966  | 4086155  | Danyang      | Schist    | 151               | 13.45 | 1.6  | 4.6  | 27.9 | 19.35 | 219   | 165  | 107   | 12    |
| KRS511760 | 435931  | 4086130  | Danyang      | Schist    | 194               | 13.45 | 1.6  | 7.7  | 30.8 | 20.3  | 250   | 172  | 94    | 13    |
| KRS511762 | 435885  | 4086061  | Danyang      | Aplite    | 151               | 7.14  | 0.7  | 2.3  | 13.3 | 9.55  | 105   | 172  | 59    | 14    |
| KRS511763 | 435886  | 4086050  | Danyang      | Vein      | 581               | 1.23  | 0.05 | 0.5  | 0.9  | 0.25  | 5.9   | 70   | 2     | 5     |
| KRS511764 | 435492  | 4085911  | Danyang      | Schist    | 108               | 5.36  | 1.8  | 5.7  | 29.8 | 22.5  | 217   | 179  | 72    | 13    |
| KRS511765 | 435373  | 4085996  | Danyang      | Dyke      | 172               | 21.9  | 1.1  | 4.5  | 20   | 14.15 | 156.5 | 180  | 63    | 13    |
| KRS511766 | 435373  | 4085996  | Danyang      | Aplite    | 129               | 5.63  | 0.3  | 1.6  | 6.9  | 3.48  | 61.7  | 183  | 24    | 12    |
| KRS511767 | 435242  | 4085963  | Danyang      | Aplite    | 646               | 14.45 | 86.8 | 4.1  | 42.1 | 64.4  | 1275  | 21   | 2     | 1     |



| Sample ID | Easting | Northing | Project  | Lithology | Li <sub>2</sub> O | Cs    | Та   | Sn   | Ga   | Nb    | Rb    | K/Rb | Mg/Li | Nb/Ta |
|-----------|---------|----------|----------|-----------|-------------------|-------|------|------|------|-------|-------|------|-------|-------|
|           |         |          |          |           | ррт               | ррт   | ррт  | ррт  | ррт  | ррт   | ррт   |      |       |       |
| KRS511768 | 435170  | 4085954  | Danyang  | Breccia   | 732               | 10.45 | 0.7  | 5.3  | 21.9 | 13.4  | 79.6  | 184  | 31    | 19    |
| KRS511769 | 435153  | 4085942  | Danyang  | Vein      | 495               | 0.85  | 0.3  | 0.6  | 1.1  | 0.39  | 8.4   | 69   | 3     | 1     |
| KRS511770 | 435153  | 4085942  | Danyang  | Vein      | 344               | 1.38  | 0.1  | 2.3  | 4.9  | 1.38  | 5.3   | 78   | 13    | 14    |
| KRS511771 | 435072  | 4085878  | Danyang  | Schist    | 129               | 18    | 1.6  | 15.8 | 22.4 | 18.3  | 225   | 178  | 102   | 11    |
| KRS511775 | 435039  | 4085868  | Danyang  | Schist    | 172               | 59.8  | 1.6  | 15.2 | 23.9 | 20.8  | 330   | 138  | 113   | 13    |
| KRS511776 | 434989  | 4085911  | Danyang  | Phyllite  | 129               | 9.01  | 1.4  | 5.1  | 22.4 | 16.6  | 227   | 217  | 229   | 12    |
| KRS511777 | 436072  | 4086850  | Danyang  | Aplite    | 560               | 50.5  | 11.6 | 5.9  | 22.3 | 55.6  | 957   | 28   | 1     | 5     |
| KRS511778 | 436069  | 4086857  | Danyang  | Aplite    | 710               | 50.9  | 10.4 | 5.5  | 22.4 | 45    | 1115  | 31   | 0     | 4     |
| KRS511779 | 436072  | 4086861  | Danyang  | Aplite    | 753               | 49.5  | 21.5 | 4.9  | 26.6 | 60.7  | 989   | 31   | 0     | 3     |
| KRS511781 | 436081  | 4086835  | Danyang  | Aplite    | 538               | 42.8  | 21.7 | 6.6  | 31   | 21.7  | 1445  | 31   | 6     | 1     |
| KRS511782 | 436107  | 4086732  | Danyang  | Aplite    | 1098              | 35.5  | 9.9  | 4.9  | 32.4 | 17.05 | 411   | 8    | 1     | 2     |
| KRS511783 | 436089  | 4086545  | Danyang  | Aplite    | 3078              | 177   | 30.3 | 28.6 | 33.3 | 43.9  | 1880  | 12   | 0     | 1     |
| KRS511784 | 433710  | 4085092  | Danyang  | Aplite    | 710               | 62.9  | 18.3 | 12.9 | 29   | 64.7  | 1250  | 30   | 0     | 4     |
| KRS511785 | 433818  | 4085148  | Danyang  | Schist    | 215               | 10.6  | 1.4  | 5.3  | 25.1 | 19.2  | 182.5 | 162  | 85    | 14    |
| KRS511786 | 433130  | 4085656  | Danyang  | Granite   | 732               | 49.6  | 16.1 | 14.7 | 27.6 | 49    | 1065  | 42   | 0     | 3     |
| KRS511787 | 433130  | 4085656  | Danyang  | Granite   | 387               | 29.8  | 7.8  | 9    | 25.4 | 48.2  | 802   | 53   | 1     | 6     |
| KRS509010 | 497786  | 4096791  | Samgeun  | Pegmatite | 108               | 35.1  | 6.1  | 30.8 | 20.6 | 23.2  | 350   | 125  | 23    | 4     |
| KRS509013 | 497514  | 4097481  | Samgeun  | Pegmatite | 108               | 7.68  | 1.7  | 8.4  | 25.2 | 14.7  | 338   | 121  | 16    | 9     |
| KRS510948 | 516283  | 4084415  | Samgeun  | Pegmatite | 108               | 24.8  | 41.6 | 30.8 | 22.7 | 42    | 811   | 0    | 0     | 1     |
| KRS510949 | 516283  | 4084415  | Samgeun  | Phyllite  | 3229              | 87    | 11.2 | 246  | 27   | 24.9  | 1305  | 0    | 0     | 2     |
| KRS510950 | 516334  | 4084428  | Samgeun  | Pegmatite | 215               | 21.3  | 7.4  | 47.8 | 30.6 | 18.65 | 634   | 0    | 0     | 3     |
| KRS510951 | 516416  | 4084921  | Samgeun  | Pegmatite | 108               | 8.68  | 4.6  | 17.9 | 26.5 | 22.4  | 419   | 0    | 0     | 5     |
| KRS510968 | 516415  | 4084922  | Samgeun  | UNKN      | 129               | 5.93  | 2.5  | 22.9 | 29   | 15.35 | 312   | 57   | 6     | 6     |
| KRS510970 | 520246  | 4083799  | Samgeun  | Pegmatite | 12012             | 1855  | 69.6 | 19.6 | 33   | 57.9  | 4980  | 13   | 0     | 1     |
| KRS510975 | 520298  | 4083801  | Samgeun  | Pegmatite | 21527             | 4930  | 300  | 41   | 37.5 | 289   | 11050 | 8    | 0     | 1     |
| KRS510979 | 520245  | 4083806  | Samgeun  | Pegmatite | 20451             | 2100  | 317  | 21.2 | 26.7 | 166   | 5030  | 9    | 0     | 1     |
| KRS511706 | 514116  | 4083745  | Samgeun  | Pegmatite | 108               | 14.35 | 8.2  | 94.3 | 30.7 | 29.3  | 519   | 50   | 7     | 4     |
| KRS511708 | 515773  | 4084339  | Samgeun  | Schist    | 495               | 13.7  | 7.8  | 55.4 | 29.5 | 22.5  | 321   | 91   | 50    | 3     |
| KRS511710 | 516268  | 4084413  | Samgeun  | Pegmatite | 581               | 29.5  | 12.2 | 74.8 | 33.9 | 35.1  | 935   | 53   | 0     | 3     |
| KRS511713 | 517014  | 4084593  | Samgeun  | Schist    | 215               | 23.5  | 1.2  | 18.5 | 25.9 | 14.45 | 288   | 138  | 73    | 12    |
| KRS510989 | 497817  | 4096322  | Seobyeok | Pegmatite | 172               | 13.65 | 1.4  | 6.7  | 20.5 | 11.65 | 218   | 159  | 107   | 8     |



| Sample ID  | Easting | Northing | Project   | Lithology | Li <sub>2</sub> O | Cs    | Та   | Sn   | Ga   | Nb    | Rb    | K/Rb | Mg/Li | Nb/Ta |
|------------|---------|----------|-----------|-----------|-------------------|-------|------|------|------|-------|-------|------|-------|-------|
|            |         |          |           |           | ррт               | ррт   | ррт  | ррт  | ррт  | ррт   | ррт   |      |       |       |
| KRS510990  | 497817  | 4096401  | Seobyeok  | Schist    | 172               | 13.5  | 1.6  | 4.6  | 27.1 | 17.05 | 408   | 102  | 154   | 11    |
| KRS510992  | 497818  | 4096426  | Seobyeok  | Schist    | 11259             | 912   | 76.2 | 15.2 | 39.1 | 109   | 2590  | 18   | 2     | 1     |
| KRS510993  | 497346  | 4096944  | Seobyeok  | Pegmatite | 129               | 7.7   | 2.8  | 9.8  | 28.4 | 23.9  | 357   | 115  | 16    | 9     |
| KRS510996  | 497355  | 4096559  | Seobyeok  | Phyllite  | 129               | 12.15 | 1.4  | 7.5  | 27.6 | 13.75 | 190   | 165  | 136   | 10    |
| KRS511701  | 497470  | 4096852  | Seobyeok  | Granite   | 108               | 7.44  | 2.6  | 7.3  | 19.9 | 17.25 | 338   | 133  | 19    | 7     |
| KRS511702  | 496975  | 4099220  | Seobyeok  | Phyllite  | 1378              | 35.7  | 1.2  | 14.7 | 26.6 | 14.55 | 335   | 111  | 6     | 12    |
| KRS511703  | 496975  | 4099220  | Seobyeok  | Pegmatite | 258               | 9.25  | 2.8  | 29.8 | 21.2 | 30    | 263   | 59   | 4     | 11    |
| KRS511704  | 496947  | 4099248  | Seobyeok  | Pegmatite | 129               | 16.85 | 2.1  | 28.3 | 18.7 | 17.2  | 403   | 71   | 4     | 8     |
| KRS511705  | 496901  | 4099247  | Seobyeok  | Granite   | 108               | 13.35 | 2.8  | 24.3 | 16   | 16.2  | 335   | 83   | 5     | 6     |
| KRS509110  | 270510  | 4093529  | Seosan    | Dyke      | 108               | 1.19  | 1.3  | 1.6  | 16.6 | 13.3  | 105.5 | 321  | 13    | 10    |
| KRS509111  | 269071  | 4093840  | Seosan    | Dyke      | 129               | 0.72  | 1.2  | 1.9  | 17.1 | 10.35 | 95.1  | 290  | 5     | 9     |
| KRS511797  | 264621  | 4092788  | Seosan    | Dyke      | 323               | 1     | 0.6  | 0.5  | 15.4 | 7.68  | 56.3  | 307  | 6     | 13    |
| KR\$511717 | 387687  | 3999653  | Yeongdong | Mudstone  | 194               | 1.97  | 1.1  | 2.8  | 20.7 | 13.25 | 109.5 | 219  | 29    | 12    |
| KRS511724  | 377117  | 4000744  | Yeongdong | Granite   | 151               | 6.53  | 1    | 2.8  | 22.8 | 10.05 | 242   | 166  | 39    | 10    |



## Appendix 2: Geochemical analyses of relevant main elements and REEs of Chungju rock-chip samples.

| Sample ID | Easting | Northing | La <sub>2</sub> O <sub>3</sub> | CeO <sub>2</sub> | Pr <sub>6</sub> O <sub>11</sub> | Nd <sub>2</sub> O <sub>3</sub> | Sm <sub>2</sub> O <sub>3</sub> | Eu <sub>2</sub> O <sub>3</sub> | Gd <sub>2</sub> O <sub>3</sub> | Tb <sub>4</sub> O <sub>7</sub> | Dy <sub>2</sub> O <sub>3</sub> | Ho <sub>2</sub> O <sub>3</sub> | Er <sub>2</sub> O <sub>3</sub> | Tm <sub>2</sub> O <sub>3</sub> | Yb <sub>2</sub> O <sub>3</sub> | Lu <sub>2</sub> O <sub>3</sub> | <b>Y</b> <sub>2</sub> <b>O</b> <sub>3</sub> | TREO | MREO/<br>TREO | HREO/<br>TREO |
|-----------|---------|----------|--------------------------------|------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------------------|------|---------------|---------------|
|           |         |          | ррт                            | ррт              | ррт                             | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                                         | wt.% | %             | %             |
| KRS506399 | 406290  | 4089789  | 556                            | 1107             | 127                             | 444                            | 81                             | 3                              | 66                             | 11                             | 60                             | 13                             | 37                             | 5.2                            | 31.8                           | 4.7                            | 392                                         | 0.29 | 22            | 21            |
| KRS506400 | 407194  | 4089530  | 133                            | 310              | 35                              | 130                            | 25                             | 6                              | 21                             | 3                              | 19                             | 4                              | 10                             | 1.3                            | 8.7                            | 1.1                            | 108                                         | 0.08 | 23            | 22            |
| KRS509001 | 407194  | 4089530  | 651                            | 1468             | 156                             | 552                            | 101                            | 9                              | 81                             | 13                             | 78                             | 15                             | 41                             | 5.5                            | 33.8                           | 4.6                            | 437                                         | 0.36 | 22            | 20            |
| KRS509002 | 407329  | 4089748  | 354                            | 780              | 85                              | 292                            | 52                             | 3                              | 43                             | 8                              | 46                             | 9                              | 27                             | 3.9                            | 24.8                           | 3.7                            | 267                                         | 0.2  | 22            | 22            |
| KRS509003 | 407415  | 4089904  | 391                            | 737              | 92                              | 316                            | 56                             | 3                              | 46                             | 7                              | 44                             | 8                              | 23                             | 3.2                            | 20.3                           | 3.0                            | 246                                         | 0.2  | 23            | 20            |
| KRS509055 | 400075  | 4094848  | 5                              | 6                | 1                               | 3                              | 1                              | 0                              | 1                              | 0                              | 1                              | 0                              | 1                              | 0.1                            | 0.6                            | 0.1                            | 8                                           | 0    | 19            | 44            |
| KRS509056 | 400075  | 4094848  | 178                            | 391              | 44                              | 156                            | 34                             | 4                              | 31                             | 5                              | 31                             | 6                              | 18                             | 2.4                            | 14.6                           | 2.1                            | 195                                         | 0.11 | 21            | 28            |
| KRS509057 | 400075  | 4094848  | 280                            | 614              | 67                              | 237                            | 48                             | 3                              | 40                             | 7                              | 44                             | 9                              | 24                             | 3.6                            | 21.0                           | 2.8                            | 228                                         | 0.16 | 22            | 23            |
| KRS509058 | 400075  | 4094848  | 52                             | 120              | 15                              | 61                             | 13                             | 4                              | 12                             | 2                              | 11                             | 2                              | 6                              | 0.9                            | 5.4                            | 0.8                            | 70                                          | 0.04 | 24            | 30            |
| KRS509059 | 400075  | 4094848  | 235                            | 493              | 55                              | 188                            | 37                             | 4                              | 27                             | 4                              | 24                             | 5                              | 14                             | 1.8                            | 12.2                           | 1.5                            | 142                                         | 0.12 | 22            | 19            |
| KRS509060 | 400075  | 4094848  | 175                            | 375              | 42                              | 145                            | 30                             | 3                              | 28                             | 5                              | 33                             | 7                              | 19                             | 2.8                            | 16.4                           | 2.3                            | 186                                         | 0.11 | 21            | 28            |
| KRS509062 | 391728  | 4088077  | 65                             | 122              | 14                              | 54                             | 9                              | 1                              | 6                              | 1                              | 6                              | 1                              | 4                              | 0.5                            | 4.4                            | 0.8                            | 38                                          | 0.03 | 23            | 19            |
| KRS509063 | 391728  | 4088077  | 97                             | 203              | 22                              | 83                             | 14                             | 4                              | 22                             | 3                              | 19                             | 4                              | 10                             | 1.4                            | 9.0                            | 1.4                            | 93                                          | 0.06 | 22            | 28            |
| KRS509064 | 391893  | 4088139  | 73                             | 159              | 16                              | 59                             | 9                              | 1                              | 7                              | 2                              | 11                             | 3                              | 8                              | 1.4                            | 10.1                           | 1.6                            | 67                                          | 0.04 | 20            | 26            |
| KRS509071 | 392875  | 4088091  | 56                             | 126              | 12                              | 46                             | 9                              | 4                              | 18                             | 3                              | 18                             | 4                              | 11                             | 1.4                            | 9.4                            | 1.3                            | 96                                          | 0.04 | 19            | 40            |
| KRS509090 | 391586  | 4089103  | 1284                           | 2506             | 306                             | 1145                           | 250                            | 12                             | 240                            | 42                             | 269                            | 52                             | 164                            | 22.8                           | 152                            | 19.3                           | 1613                                        | 0.81 | 22            | 32            |
| KRS509091 | 392510  | 4090573  | 181                            | 393              | 42                              | 155                            | 27                             | 7                              | 22                             | 4                              | 20                             | 4                              | 11                             | 1.6                            | 9.9                            | 1.6                            | 113                                         | 0.1  | 22            | 20            |
| KRS509092 | 392510  | 4090573  | 151                            | 296              | 33                              | 122                            | 22                             | 6                              | 19                             | 3                              | 17                             | 3                              | 10                             | 1.4                            | 8.7                            | 1.2                            | 97                                          | 0.08 | 22            | 21            |
| KRS509093 | 392510  | 4090573  | 22                             | 49               | 7                               | 31                             | 8                              | 3                              | 9                              | 1                              | 9                              | 2                              | 5                              | 0.7                            | 4.7                            | 0.7                            | 53                                          | 0.02 | 24            | 43            |
| KRS509094 | 406424  | 4089739  | 395                            | 776              | 85                              | 294                            | 51                             | 4                              | 41                             | 7                              | 44                             | 9                              | 25                             | 3.6                            | 23.8                           | 3.4                            | 274                                         | 0.2  | 21            | 21            |
| KRS509095 | 406910  | 4090820  | 89                             | 192              | 22                              | 85                             | 16                             | 5                              | 14                             | 2                              | 13                             | 2                              | 7                              | 1.0                            | 6.5                            | 0.8                            | 70                                          | 0.05 | 23            | 23            |
| KRS509096 | 406940  | 4090797  | 33                             | 71               | 10                              | 45                             | 10                             | 3                              | 9                              | 2                              | 9                              | 2                              | 5                              | 0.7                            | 4.6                            | 0.6                            | 56                                          | 0.03 | 25            | 35            |
| KRS510901 | 407115  | 4090626  | 86                             | 191              | 22                              | 83                             | 16                             | 4                              | 14                             | 2                              | 14                             | 3                              | 8                              | 1.0                            | 7.3                            | 1.2                            | 78                                          | 0.05 | 23            | 25            |
| KRS510902 | 407142  | 4090625  | 101                            | 224              | 24                              | 96                             | 18                             | 5                              | 15                             | 2                              | 13                             | 3                              | 8                              | 1.0                            | 6.9                            | 1.1                            | 76                                          | 0.06 | 23            | 22            |
| KRS510903 | 407103  | 4090652  | 789                            | 1677             | 186                             | 678                            | 118                            | 17                             | 93                             | 15                             | 89                             | 17                             | 47                             | 5.8                            | 35.0                           | 5.0                            | 542                                         | 0.43 | 22            | 20            |
| KRS510904 | 406647  | 4089489  | 290                            | 590              | 74                              | 246                            | 44                             | 3                              | 33                             | 5                              | 34                             | 7                              | 21                             | 3.2                            | 22.7                           | 3.3                            | 197                                         | 0.16 | 23            | 21            |



| Sample ID | Easting | Northing | La <sub>2</sub> O <sub>3</sub> | CeO <sub>2</sub> | Pr <sub>6</sub> O <sub>11</sub> | Nd <sub>2</sub> O <sub>3</sub> | Sm <sub>2</sub> O <sub>3</sub> | Eu <sub>2</sub> O <sub>3</sub> | Gd <sub>2</sub> O <sub>3</sub> | Tb <sub>4</sub> O <sub>7</sub> | Dy <sub>2</sub> O <sub>3</sub> | Ho <sub>2</sub> O <sub>3</sub> | Er <sub>2</sub> O <sub>3</sub> | Tm <sub>2</sub> O <sub>3</sub> | Yb <sub>2</sub> O <sub>3</sub> | Lu <sub>2</sub> O <sub>3</sub> | Y <sub>2</sub> O <sub>3</sub> | TREO | MREO/<br>TREO | HREO/<br>TREO |
|-----------|---------|----------|--------------------------------|------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|------|---------------|---------------|
|           |         |          | ррт                            | ррт              | ррт                             | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                           | wt.% | %             | %             |
| KRS510905 | 407249  | 4089671  | 541                            | 1126             | 122                             | 436                            | 80                             | 5                              | 66                             | 11                             | 63                             | 12                             | 33                             | 4.4                            | 28.2                           | 4.0                            | 330                           | 0.29 | 22            | 19            |
| KRS510906 | 407302  | 4089054  | 94                             | 179              | 21                              | 80                             | 15                             | 2                              | 12                             | 2                              | 11                             | 2                              | 5                              | 0.8                            | 4.6                            | 0.7                            | 62                            | 0.05 | 23            | 21            |
| KRS510907 | 406956  | 4088946  | 24                             | 42               | 6                               | 22                             | 4                              | 1                              | 4                              | 1                              | 3                              | 1                              | 2                              | 0.3                            | 2.2                            | 0.3                            | 23                            | 0.01 | 24            | 28            |
| KRS510908 | 391492  | 4088777  | 44                             | 86               | 9                               | 33                             | 6                              | 1                              | 4                              | 1                              | 3                              | 1                              | 1                              | 0.2                            | 1.3                            | 0.2                            | 16                            | 0.02 | 23            | 14            |
| KRS510909 | 391523  | 4088794  | 1179                           | 1978             | 280                             | 960                            | 201                            | 9                              | 186                            | 34                             | 226                            | 45                             | 136                            | 18.6                           | 120.1                          | 15.9                           | 1247                          | 0.66 | 23            | 31            |
| KRS510910 | 391540  | 4088787  | 51                             | 108              | 14                              | 57                             | 15                             | 1                              | 16                             | 3                              | 18                             | 4                              | 11                             | 1.8                            | 11.9                           | 1.6                            | 128                           | 0.04 | 21            | 45            |
| KRS510911 | 391540  | 4088787  | 3                              | 6                | 1                               | 3                              | 1                              | 0                              | 1                              | 0                              | 1                              | 0                              | 1                              | 0.2                            | 1.0                            | 0.2                            | 11                            | 0    | 18            | 54            |
| KRS510912 | 391559  | 4088801  | 490                            | 1536             | 152                             | 595                            | 166                            | 8                              | 170                            | 32                             | 210                            | 41                             | 124                            | 16.6                           | 107.5                          | 14.2                           | 1156                          | 0.48 | 21            | 39            |
| KRS510913 | 391559  | 4088757  | 10                             | 15               | 1                               | 5                              | 2                              | 0                              | 2                              | 0                              | 3                              | 1                              | 2                              | 0.3                            | 2.3                            | 0.3                            | 15                            | 0.01 | 16            | 43            |
| KRS510914 | 399278  | 4090258  | 830                            | 2193             | 187                             | 617                            | 86                             | 2                              | 49                             | 8                              | 47                             | 9                              | 29                             | 4.0                            | 27.4                           | 3.8                            | 265                           | 0.44 | 20            | 10            |
| KRS510915 | 399299  | 4090204  | 341                            | 937              | 83                              | 278                            | 56                             | 2                              | 51                             | 9                              | 51                             | 10                             | 29                             | 4.3                            | 28.1                           | 4.1                            | 288                           | 0.22 | 19            | 22            |
| KRS510916 | 399435  | 4090361  | 814                            | 2162             | 215                             | 765                            | 175                            | 8                              | 160                            | 30                             | 200                            | 40                             | 122                            | 16.7                           | 107.7                          | 14.3                           | 1060                          | 0.59 | 21            | 30            |
| KRS510921 | 398884  | 4090162  | 1061                           | 2678             | 268                             | 937                            | 202                            | 9                              | 175                            | 32                             | 212                            | 42                             | 126                            | 17.5                           | 111.7                          | 14.9                           | 1151                          | 0.7  | 21            | 27            |
| KRS510922 | 399010  | 4090209  | 1126                           | 2506             | 285                             | 1003                           | 213                            | 9                              | 188                            | 34                             | 226                            | 44                             | 134                            | 18.4                           | 122.4                          | 16.0                           | 1253                          | 0.72 | 22            | 29            |
| KRS513204 | 391530  | 4088794  | 1037                           | 2328             | 245                             | 829                            | 188                            | 8                              | 189                            | 35                             | 226                            | 47                             | 137                            | 19.2                           | 124.1                          | 17.7                           | 1314                          | 0.67 | 20            | 31            |
| KRS513205 | 391527  | 4088796  | 904                            | 1990             | 237                             | 889                            | 213                            | 9                              | 201                            | 34                             | 222                            | 46                             | 137                            | 19.5                           | 127.5                          | 18.2                           | 1276                          | 0.63 | 22            | 33            |
| KRS513206 | 391547  | 4088789  | 905                            | 1978             | 237                             | 860                            | 208                            | 8                              | 200                            | 34                             | 220                            | 45                             | 133                            | 18.9                           | 124.1                          | 17.8                           | 1248                          | 0.62 | 22            | 33            |
| KRS513207 | 391581  | 4088741  | 891                            | 1990             | 221                             | 777                            | 184                            | 7                              | 162                            | 28                             | 175                            | 35                             | 102                            | 14.9                           | 99.9                           | 13.9                           | 970                           | 0.57 | 21            | 28            |
| KRS513208 | 391582  | 4088740  | 966                            | 2518             | 246                             | 876                            | 206                            | 9                              | 182                            | 32                             | 201                            | 41                             | 124                            | 18.4                           | 123.0                          | 18.3                           | 1069                          | 0.66 | 20            | 27            |
| KRS513209 | 391607  | 4088736  | 531                            | 1271             | 161                             | 651                            | 195                            | 9                              | 193                            | 35                             | 225                            | 47                             | 138                            | 20.0                           | 132.7                          | 19.2                           | 1346                          | 0.5  | 22            | 44            |
| KRS513210 | 391600  | 4088727  | 741                            | 1935             | 172                             | 632                            | 146                            | 6                              | 131                            | 27                             | 172                            | 36                             | 107                            | 16.8                           | 101.9                          | 12.3                           | 1059                          | 0.53 | 19            | 32            |
| KRS513211 | 391606  | 4088728  | 776                            | 1836             | 215                             | 794                            | 183                            | 8                              | 172                            | 32                             | 212                            | 41                             | 126                            | 18.0                           | 112.1                          | 14.0                           | 1248                          | 0.58 | 22            | 34            |
| KRS513212 | 391588  | 4088697  | 921                            | 1978             | 231                             | 784                            | 187                            | 9                              | 186                            | 35                             | 215                            | 46                             | 132                            | 18.4                           | 111.1                          | 15.0                           | 1231                          | 0.61 | 21            | 33            |
| KRS513213 | 391602  | 4088717  | 985                            | 1683             | 244                             | 921                            | 201                            | 8                              | 172                            | 31                             | 183                            | 37                             | 105                            | 16.7                           | 103.3                          | 12.4                           | 1086                          | 0.58 | 24            | 30            |
| KRS513214 | 391564  | 4088712  | 909                            | 1978             | 195                             | 707                            | 147                            | 6                              | 126                            | 25                             | 158                            | 34                             | 103                            | 16.3                           | 104.8                          | 13.0                           | 973                           | 0.55 | 20            | 28            |
| KRS513215 | 391564  | 4088708  | 863                            | 1603             | 182                             | 665                            | 154                            | 7                              | 142                            | 28                             | 174                            | 36                             | 106                            | 17.2                           | 106.2                          | 13.3                           | 1016                          | 0.51 | 21            | 32            |
| KRS513216 | 399005  | 4090144  | 1128                           | 2316             | 290                             | 977                            | 209                            | 10                             | 201                            | 35                             | 216                            | 43                             | 127                            | 16.8                           | 110.8                          | 15.0                           | 1283                          | 0.7  | 22            | 29            |
| KRS513217 | 398990  | 4090144  | 1454                           | 3304             | 346                             | 1277                           | 259                            | 11                             | 210                            | 38                             | 232                            | 48                             | 139                            | 21.1                           | 129.2                          | 15.9                           | 1403                          | 0.89 | 21            | 25            |
| KRS513218 | 398963  | 4090132  | 223                            | 924              | 98                              | 447                            | 153                            | 9                              | 175                            | 40                             | 264                            | 56                             | 163                            | 26.0                           | 160.6                          | 19.3                           | 1460                          | 0.42 | 20            | 56            |
| KRS513221 | 398963  | 4090141  | 2316                           | 4729             | 623                             | 2088                           | 433                            | 17                             | 357                            | 67                             | 402                            | 84                             | 239                            | 36.9                           | 230.0                          | 28.5                           | 2337                          | 1.4  | 23            | 27            |



| Sample ID | Easting | Northing | La <sub>2</sub> O <sub>3</sub> | CeO <sub>2</sub> | Pr <sub>6</sub> O <sub>11</sub> | Nd <sub>2</sub> O <sub>3</sub> | Sm <sub>2</sub> O <sub>3</sub> | Eu <sub>2</sub> O <sub>3</sub> | Gd <sub>2</sub> O <sub>3</sub> | Tb <sub>4</sub> O <sub>7</sub> | Dy <sub>2</sub> O <sub>3</sub> | Ho <sub>2</sub> O <sub>3</sub> | Er <sub>2</sub> O <sub>3</sub> | Tm <sub>2</sub> O <sub>3</sub> | Yb <sub>2</sub> O <sub>3</sub> | Lu <sub>2</sub> O <sub>3</sub> | Y <sub>2</sub> O <sub>3</sub> | TREO | MREO/<br>TREO | HREO/<br>TREO |
|-----------|---------|----------|--------------------------------|------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|------|---------------|---------------|
|           |         |          | ррт                            | ррт              | ррт                             | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                           | wt.% | %             | %             |
| KRS513222 | 398974  | 4090154  | 1290                           | 3489             | 336                             | 1092                           | 254                            | 14                             | 270                            | 58                             | 370                            | 80                             | 240                            | 33.2                           | 203.3                          | 27.3                           | 2165                          | 0.99 | 19            | 35            |
| KRS513223 | 398986  | 4090159  | 1712                           | 3980             | 439                             | 1680                           | 368                            | 15                             | 319                            | 62                             | 384                            | 81                             | 241                            | 38.8                           | 235.7                          | 30.0                           | 2324                          | 1.19 | 22            | 31            |
| KRS513224 | 398994  | 4090178  | 1196                           | 2420             | 272                             | 1012                           | 213                            | 8                              | 174                            | 33                             | 206                            | 42                             | 122                            | 19.1                           | 118.4                          | 14.4                           | 1229                          | 0.71 | 22            | 28            |
| KRS513225 | 398995  | 4090193  | 1066                           | 2469             | 275                             | 1008                           | 206                            | 10                             | 172                            | 31                             | 201                            | 40                             | 125                            | 17.9                           | 110.6                          | 14.2                           | 1156                          | 0.69 | 22            | 27            |
| KRS513226 | 398999  | 4090201  | 2211                           | 4680             | 555                             | 2000                           | 420                            | 17                             | 368                            | 62                             | 404                            | 82                             | 249                            | 36.1                           | 227.2                          | 30.1                           | 2368                          | 1.37 | 22            | 28            |
| KRS513227 | 399010  | 4090207  | 2123                           | 4213             | 528                             | 1849                           | 392                            | 17                             | 350                            | 66                             | 397                            | 80                             | 229                            | 35.2                           | 214.6                          | 26.0                           | 2356                          | 1.29 | 22            | 29            |
| KRS513228 | 399004  | 4090202  | 185                            | 308              | 40                              | 152                            | 24                             | 3                              | 17                             | 3                              | 14                             | 3                              | 8                              | 1.2                            | 7.2                            | 0.9                            | 85                            | 0.09 | 25            | 17            |
| KRS513229 | 395989  | 4089775  | 67                             | 150              | 18                              | 71                             | 13                             | 2                              | 10                             | 2                              | 8                              | 2                              | 5                              | 0.7                            | 4.4                            | 0.6                            | 47                            | 0.04 | 25            | 20            |
| KRS513230 | 395989  | 4089775  | 283                            | 678              | 73                              | 279                            | 51                             | 4                              | 40                             | 7                              | 39                             | 7                              | 20                             | 2.9                            | 16.9                           | 2.0                            | 214                           | 0.17 | 23            | 21            |
| KRS513231 | 395970  | 4089745  | 204                            | 612              | 49                              | 185                            | 34                             | 2                              | 25                             | 4                              | 27                             | 5                              | 16                             | 2.5                            | 16.5                           | 2.1                            | 151                           | 0.13 | 20            | 19            |
| KRS513232 | 395721  | 4089696  | 202                            | 545              | 52                              | 205                            | 37                             | 2                              | 26                             | 4                              | 27                             | 6                              | 16                             | 2.5                            | 15.6                           | 2.2                            | 149                           | 0.13 | 22            | 19            |
| KRS513233 | 395628  | 4089661  | 191                            | 528              | 48                              | 186                            | 36                             | 3                              | 26                             | 5                              | 27                             | 6                              | 16                             | 2.4                            | 15.9                           | 2.1                            | 170                           | 0.13 | 21            | 22            |
| KRS513234 | 395525  | 4089663  | 157                            | 563              | 38                              | 143                            | 26                             | 2                              | 20                             | 4                              | 21                             | 4                              | 12                             | 2.0                            | 12.6                           | 1.7                            | 123                           | 0.11 | 18            | 18            |
| KRS513235 | 395504  | 4089666  | 280                            | 520              | 70                              | 267                            | 47                             | 3                              | 35                             | 6                              | 33                             | 7                              | 18                             | 2.8                            | 17.3                           | 2.2                            | 190                           | 0.15 | 25            | 21            |
| KRS513236 | 395392  | 4089581  | 469                            | 1499             | 115                             | 442                            | 95                             | 6                              | 88                             | 18                             | 115                            | 25                             | 79                             | 13.2                           | 81.9                           | 10.1                           | 734                           | 0.38 | 18            | 31            |
| KRS513237 | 395339  | 4089622  | 7                              | 52               | 3                               | 15                             | 8                              | 1                              | 13                             | 3                              | 20                             | 4                              | 13                             | 2.0                            | 13.4                           | 1.8                            | 128                           | 0.03 | 15            | 70            |
| KRS513238 | 393107  | 4086477  | 571                            | 892              | 117                             | 439                            | 80                             | 5                              | 63                             | 11                             | 63                             | 13                             | 37                             | 5.6                            | 32.8                           | 4.1                            | 377                           | 0.27 | 23            | 23            |
| KRS513241 | 391556  | 4088532  | 351                            | 834              | 85                              | 310                            | 60                             | 2                              | 45                             | 8                              | 47                             | 10                             | 28                             | 4.3                            | 28.2                           | 3.5                            | 283                           | 0.21 | 21            | 22            |
| KRS513242 | 391566  | 4088553  | 1319                           | 2739             | 274                             | 990                            | 198                            | 9                              | 168                            | 33                             | 201                            | 43                             | 128                            | 20.5                           | 124.1                          | 15.1                           | 1219                          | 0.75 | 20            | 26            |
| KRS513243 | 391613  | 4088598  | 201                            | 402              | 51                              | 201                            | 40                             | 2                              | 32                             | 6                              | 32                             | 6                              | 18                             | 2.8                            | 17.3                           | 2.2                            | 187                           | 0.12 | 24            | 25            |
| KRS513244 | 391589  | 4088622  | 255                            | 690              | 62                              | 236                            | 48                             | 2                              | 43                             | 8                              | 46                             | 10                             | 27                             | 4.4                            | 26.4                           | 3.3                            | 281                           | 0.17 | 20            | 26            |
| KRS513245 | 399015  | 4090677  | 318                            | 536              | 72                              | 247                            | 46                             | 3                              | 35                             | 6                              | 38                             | 8                              | 23                             | 3.3                            | 20.8                           | 2.9                            | 227                           | 0.16 | 23            | 23            |
| KRS513246 | 399052  | 4090540  | 203                            | 785              | 50                              | 171                            | 40                             | 4                              | 37                             | 7                              | 43                             | 8                              | 23                             | 3.1                            | 18.7                           | 2.6                            | 248                           | 0.16 | 16            | 24            |
| KRS513251 | 399013  | 4090518  | 154                            | 458              | 40                              | 141                            | 31                             | 2                              | 25                             | 5                              | 30                             | 6                              | 16                             | 2.5                            | 16.1                           | 2.1                            | 163                           | 0.11 | 20            | 25            |
| KRS513252 | 398784  | 4090412  | 128                            | 236              | 34                              | 125                            | 26                             | 4                              | 22                             | 3                              | 20                             | 4                              | 9                              | 1.4                            | 8.5                            | 1.2                            | 110                           | 0.07 | 25            | 25            |
| KRS513253 | 398765  | 4090423  | 109                            | 384              | 29                              | 100                            | 18                             | 3                              | 15                             | 3                              | 17                             | 3                              | 9                              | 1.2                            | 8.1                            | 1.0                            | 99                            | 0.08 | 19            | 20            |
| KRS513254 | 399109  | 4090728  | 135                            | 301              | 33                              | 123                            | 27                             | 4                              | 23                             | 4                              | 23                             | 4                              | 13                             | 1.8                            | 11.5                           | 1.6                            | 134                           | 0.08 | 22            | 26            |
| KRS513255 | 399204  | 4090775  | 235                            | 456              | 52                              | 173                            | 31                             | 2                              | 25                             | 4                              | 26                             | 5                              | 15                             | 2.0                            | 13.7                           | 1.8                            | 142                           | 0.12 | 22            | 20            |
| KRS513256 | 398982  | 4090805  | 120                            | 340              | 28                              | 105                            | 23                             | 2                              | 22                             | 4                              | 26                             | 5                              | 16                             | 2.3                            | 13.4                           | 1.8                            | 149                           | 0.09 | 19            | 28            |
| KRS513257 | 398962  | 4095089  | 20                             | 39               | 5                               | 19                             | 6                              | 0                              | 7                              | 2                              | 12                             | 3                              | 9                              | 1.4                            | 9.5                            | 1.3                            | 90                            | 0.02 | 17            | 60            |



| Sample ID | Easting | Northing | La <sub>2</sub> O <sub>3</sub> | CeO <sub>2</sub> | <b>Pr</b> 6 <b>O</b> 11 | Nd <sub>2</sub> O <sub>3</sub> | Sm <sub>2</sub> O <sub>3</sub> | Eu <sub>2</sub> O <sub>3</sub> | Gd <sub>2</sub> O <sub>3</sub> | Tb <sub>4</sub> O <sub>7</sub> | Dy <sub>2</sub> O <sub>3</sub> | Ho <sub>2</sub> O <sub>3</sub> | Er <sub>2</sub> O <sub>3</sub> | Tm <sub>2</sub> O <sub>3</sub> | Yb <sub>2</sub> O <sub>3</sub> | Lu <sub>2</sub> O <sub>3</sub> | Y <sub>2</sub> O <sub>3</sub> | TREO | MREO/<br>TREO | HREO/<br>TREO |
|-----------|---------|----------|--------------------------------|------------------|-------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|------|---------------|---------------|
|           |         |          | ррт                            | ppm              | ррт                     | ррт                            | ррт                            | ppm                            | ррт                            | ppm                            | ppm                            | ppm                            | ppm                            | ррт                            | ррт                            | ррт                            | ррт                           | wt.% | %             | %             |
| KRS513258 | 398773  | 4095076  | 16                             | 27               | 4                       | 14                             | 3                              | 1                              | 3                              | 1                              | 3                              | 1                              | 2                              | 0.3                            | 2.0                            | 0.3                            | 23                            | 0.01 | 22            | 36            |
| KRS513259 | 398759  | 4095047  | 55                             | 51               | 14                      | 49                             | 11                             | 3                              | 10                             | 2                              | 10                             | 2                              | 5                              | 0.8                            | 5.2                            | 0.6                            | 53                            | 0.03 | 28            | 34            |
| KRS513260 | 398757  | 4095045  | 54                             | 63               | 14                      | 52                             | 10                             | 3                              | 9                              | 1                              | 8                              | 1                              | 4                              | 0.6                            | 4.2                            | 0.5                            | 44                            | 0.03 | 28            | 28            |
| KRS513261 | 398727  | 4095038  | 13                             | 30               | 4                       | 14                             | 4                              | 0                              | 4                              | 1                              | 4                              | 1                              | 2                              | 0.4                            | 2.7                            | 0.4                            | 32                            | 0.01 | 20            | 42            |
| KRS513262 | 398680  | 4095008  | 58                             | 96               | 12                      | 42                             | 8                              | 4                              | 7                              | 1                              | 5                              | 1                              | 3                              | 0.5                            | 2.8                            | 0.4                            | 37                            | 0.03 | 22            | 22            |
| KRS513263 | 398581  | 4094968  | 34                             | 62               | 8                       | 26                             | 5                              | 1                              | 4                              | 1                              | 5                              | 1                              | 3                              | 0.4                            | 3.0                            | 0.4                            | 29                            | 0.02 | 21            | 26            |
| KRS513264 | 399022  | 4094408  | 26                             | 39               | 4                       | 12                             | 2                              | 0                              | 1                              | 0                              | 1                              | 0                              | 0                              | 0.1                            | 0.4                            | 0.1                            | 5                             | 0.01 | 18            | 9             |
| KRS513265 | 399140  | 4094299  | 129                            | 329              | 30                      | 99                             | 24                             | 2                              | 25                             | 5                              | 32                             | 6                              | 19                             | 3.1                            | 19.5                           | 2.5                            | 175                           | 0.09 | 18            | 32            |
| KRS513266 | 399040  | 4094409  | 50                             | 99               | 13                      | 43                             | 8                              | 2                              | 6                              | 1                              | 6                              | 1                              | 3                              | 0.4                            | 2.7                            | 0.3                            | 35                            | 0.03 | 23            | 21            |
| KRS513267 | 399043  | 4094411  | 11                             | 12               | 3                       | 9                              | 2                              | 0                              | 2                              | 0                              | 2                              | 0                              | 1                              | 0.1                            | 0.8                            | 0.1                            | 8                             | 0.01 | 27            | 28            |
| KRS513268 | 400337  | 4094683  | 246                            | 493              | 59                      | 192                            | 39                             | 4                              | 34                             | 6                              | 37                             | 7                              | 21                             | 3.2                            | 19.6                           | 2.4                            | 184                           | 0.13 | 22            | 24            |
| KRS513269 | 400297  | 4092723  | 48                             | 98               | 10                      | 36                             | 7                              | 1                              | 5                              | 1                              | 4                              | 1                              | 2                              | 0.4                            | 2.4                            | 0.3                            | 28                            | 0.02 | 21            | 19            |
| KRS513270 | 399038  | 4091265  | 121                            | 332              | 31                      | 112                            | 28                             | 2                              | 28                             | 5                              | 31                             | 6                              | 18                             | 2.7                            | 17.5                           | 2.2                            | 182                           | 0.09 | 20            | 32            |
| KRS513271 | 399281  | 4092616  | 264                            | 791              | 69                      | 247                            | 55                             | 4                              | 46                             | 8                              | 47                             | 9                              | 25                             | 3.3                            | 18.6                           | 2.4                            | 246                           | 0.18 | 20            | 22            |
| KRS513272 | 399280  | 4092616  | 29                             | 54               | 6                       | 24                             | 5                              | 1                              | 4                              | 1                              | 4                              | 1                              | 2                              | 0.4                            | 2.5                            | 0.3                            | 24                            | 0.02 | 22            | 25            |
| KRS513273 | 399006  | 4092626  | 113                            | 259              | 27                      | 105                            | 22                             | 3                              | 19                             | 3                              | 20                             | 4                              | 11                             | 1.6                            | 9.5                            | 1.3                            | 114                           | 0.07 | 22            | 26            |
| KRS513274 | 399071  | 4092652  | 192                            | 456              | 46                      | 166                            | 32                             | 3                              | 27                             | 4                              | 25                             | 5                              | 13                             | 1.8                            | 11.3                           | 1.4                            | 130                           | 0.11 | 22            | 20            |
| KRS513275 | 394096  | 4089928  | 209                            | 457              | 47                      | 162                            | 31                             | 2                              | 21                             | 4                              | 22                             | 4                              | 12                             | 1.9                            | 11.8                           | 1.7                            | 118                           | 0.11 | 21            | 18            |
| KRS513276 | 394009  | 4089948  | 196                            | 585              | 48                      | 171                            | 35                             | 2                              | 30                             | 5                              | 34                             | 7                              | 19                             | 2.8                            | 17.7                           | 2.2                            | 190                           | 0.13 | 19            | 23            |
| KRS513281 | 393910  | 4089926  | 140                            | 191              | 46                      | 172                            | 48                             | 4                              | 41                             | 8                              | 55                             | 11                             | 31                             | 5.1                            | 33.0                           | 4.3                            | 279                           | 0.11 | 26            | 44            |
| KRS513282 | 393914  | 4089787  | 62                             | 392              | 19                      | 74                             | 22                             | 2                              | 24                             | 5                              | 33                             | 7                              | 22                             | 3.2                            | 20.4                           | 2.4                            | 230                           | 0.09 | 14            | 38            |
| KRS513283 | 393713  | 4089542  | 77                             | 332              | 23                      | 83                             | 23                             | 2                              | 25                             | 5                              | 34                             | 7                              | 21                             | 3.0                            | 19.1                           | 2.3                            | 185                           | 0.08 | 17            | 36            |
| KRS513284 | 393785  | 4089517  | 96                             | 279              | 25                      | 98                             | 24                             | 2                              | 28                             | 5                              | 34                             | 7                              | 20                             | 2.7                            | 18.2                           | 2.5                            | 192                           | 0.08 | 19            | 37            |
| KRS513285 | 396514  | 4089107  | 455                            | 909              | 104                     | 369                            | 71                             | 7                              | 52                             | 9                              | 51                             | 10                             | 28                             | 4.1                            | 25.6                           | 3.7                            | 286                           | 0.24 | 22            | 20            |
| KRS513286 | 396453  | 4089130  | 379                            | 888              | 87                      | 302                            | 48                             | 8                              | 33                             | 5                              | 28                             | 5                              | 15                             | 2.4                            | 16.7                           | 2.4                            | 124                           | 0.19 | 22            | 12            |
| KRS513287 | 396335  | 4088995  | 107                            | 235              | 30                      | 118                            | 26                             | 5                              | 20                             | 3                              | 18                             | 3                              | 9                              | 1.2                            | 8.0                            | 1.3                            | 90                            | 0.07 | 25            | 24            |
| KRS513288 | 396225  | 4088923  | 163                            | 450              | 40                      | 145                            | 28                             | 2                              | 24                             | 4                              | 25                             | 5                              | 14                             | 2.1                            | 13.5                           | 1.8                            | 137                           | 0.11 | 20            | 22            |
| KRS513289 | 396600  | 4088861  | 138                            | 278              | 32                      | 115                            | 20                             | 3                              | 13                             | 2                              | 8                              | 2                              | 4                              | 0.7                            | 4.9                            | 0.9                            | 39                            | 0.07 | 24            | 12            |

TREO (Total Rare Earth Oxide) =  $La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Y_2O_3 + Lu_2O_3$ .

MREO (Magnetic Rare Earth Oxide) =  $Pr_6O_{11} + Nd_2O_3 + Tb_4O_7 + Dy_2O_3$ 

HREO (Heavy Rare Earth Oxide) =  $Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Y_2O_3 + Lu_2O_3 + Lu_$ 



## Appendix 3: Geochemical analyses of relevant main elements and REEs of Chungju stream-sediment samples.

| Sample ID | Easting | Northing | La <sub>2</sub> O <sub>3</sub> | CeO <sub>2</sub> | Pr <sub>6</sub> O <sub>11</sub> | $Nd_2O_3$ | Sm <sub>2</sub> O <sub>3</sub> | Eu <sub>2</sub> O <sub>3</sub> | Gd <sub>2</sub> O <sub>3</sub> | Tb <sub>4</sub> O <sub>7</sub> | Dy <sub>2</sub> O <sub>3</sub> | Ho <sub>2</sub> O <sub>3</sub> | Er <sub>2</sub> O <sub>3</sub> | Tm <sub>2</sub> O <sub>3</sub> | Yb <sub>2</sub> O <sub>3</sub> | Lu <sub>2</sub> O <sub>3</sub> | Y <sub>2</sub> O <sub>3</sub> | TREO | MREO/<br>TREO | HREO/<br>TREO |
|-----------|---------|----------|--------------------------------|------------------|---------------------------------|-----------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|------|---------------|---------------|
|           |         |          | ррт                            | ррт              | ррт                             | ррт       | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                           | wt.% | %             | %             |
| KRS510604 | 392119  | 4086826  | 73                             | 159              | 16                              | 59        | 9                              | 2                              | 8                              | 1                              | 7                              | 1                              | 4                              | 0                              | 3                              | 0.4                            | 35                            | 0.04 | 22            | 16            |
| KRS510605 | 392019  | 4086930  | 102                            | 220              | 23                              | 87        | 14                             | 3                              | 11                             | 2                              | 10                             | 2                              | 5                              | 1                              | 4                              | 0.5                            | 51                            | 0.05 | 23            | 17            |
| KRS510606 | 392427  | 4086893  | 53                             | 102              | 11                              | 42        | 7                              | 1                              | 5                              | 1                              | 4                              | 1                              | 2                              | 0                              | 2                              | 0.2                            | 20                            | 0.03 | 23            | 15            |
| KRS510607 | 392506  | 4086695  | 87                             | 237              | 20                              | 76        | 13                             | 2                              | 13                             | 2                              | 13                             | 3                              | 7                              | 1                              | 5                              | 0.7                            | 70                            | 0.06 | 20            | 21            |
| KRS510608 | 392708  | 4086959  | 48                             | 116              | 10                              | 38        | 6                              | 1                              | 5                              | 1                              | 5                              | 1                              | 3                              | 0                              | 2                              | 0.3                            | 24                            | 0.03 | 21            | 17            |
| KRS510609 | 392535  | 4087250  | 63                             | 138              | 14                              | 53        | 9                              | 2                              | 7                              | 1                              | 7                              | 1                              | 3                              | 0                              | 3                              | 0.4                            | 33                            | 0.03 | 22            | 17            |
| KRS510610 | 392833  | 4087194  | 49                             | 108              | 11                              | 41        | 7                              | 2                              | 6                              | 1                              | 6                              | 1                              | 3                              | 0                              | 3                              | 0.3                            | 31                            | 0.03 | 22            | 20            |
| KRS510611 | 392893  | 4087827  | 56                             | 126              | 12                              | 46        | 9                              | 2                              | 7                              | 1                              | 7                              | 2                              | 4                              | 1                              | 3                              | 0.4                            | 39                            | 0.03 | 21            | 21            |
| KRS510612 | 392892  | 4088093  | 103                            | 225              | 23                              | 86        | 14                             | 2                              | 12                             | 2                              | 11                             | 2                              | 6                              | 1                              | 4                              | 0.6                            | 55                            | 0.05 | 22            | 17            |
| KRS510613 | 392711  | 4087769  | 70                             | 154              | 16                              | 60        | 10                             | 2                              | 9                              | 1                              | 8                              | 2                              | 4                              | 1                              | 3                              | 0.5                            | 44                            | 0.04 | 22            | 20            |
| KRS510614 | 392695  | 4087950  | 92                             | 226              | 20                              | 79        | 14                             | 2                              | 13                             | 2                              | 13                             | 2                              | 7                              | 1                              | 6                              | 0.7                            | 73                            | 0.06 | 21            | 22            |
| KRS510615 | 392197  | 4087895  | 58                             | 140              | 14                              | 56        | 10                             | 3                              | 9                              | 1                              | 8                              | 1                              | 4                              | 1                              | 4                              | 0.5                            | 42                            | 0.04 | 23            | 21            |
| KRS510622 | 393168  | 4088561  | 52                             | 120              | 12                              | 46        | 9                              | 1                              | 8                              | 1                              | 8                              | 2                              | 4                              | 1                              | 4                              | 0.5                            | 48                            | 0.03 | 21            | 24            |
| KRS510628 | 392409  | 4090020  | 74                             | 168              | 17                              | 62        | 12                             | 2                              | 10                             | 2                              | 11                             | 2                              | 6                              | 1                              | 5                              | 0.7                            | 69                            | 0.04 | 21            | 24            |
| KRS510629 | 392779  | 4090727  | 98                             | 228              | 23                              | 81        | 15                             | 2                              | 12                             | 2                              | 12                             | 2                              | 6                              | 1                              | 5                              | 0.7                            | 69                            | 0.06 | 21            | 20            |
| KRS510630 | 392361  | 4086089  | 189                            | 431              | 47                              | 177       | 29                             | 2                              | 23                             | 4                              | 22                             | 4                              | 12                             | 2                              | 10                             | 1.2                            | 130                           | 0.11 | 23            | 19            |
| KRS510631 | 393394  | 4088598  | 87                             | 185              | 19                              | 71        | 12                             | 2                              | 9                              | 1                              | 9                              | 2                              | 5                              | 1                              | 4                              | 0.5                            | 51                            | 0.05 | 22            | 18            |
| KRS510632 | 393428  | 4088792  | 74                             | 163              | 16                              | 61        | 10                             | 2                              | 8                              | 1                              | 7                              | 1                              | 4                              | 1                              | 3                              | 0.4                            | 40                            | 0.04 | 22            | 17            |
| KRS510633 | 406122  | 4090016  | 286                            | 640              | 70                              | 261       | 43                             | 2                              | 34                             | 6                              | 34                             | 6                              | 17                             | 2                              | 13                             | 1.6                            | 190                           | 0.16 | 23            | 19            |
| KRS510634 | 405972  | 4089777  | 100                            | 257              | 22                              | 82        | 14                             | 2                              | 11                             | 2                              | 10                             | 2                              | 5                              | 1                              | 4                              | 0.5                            | 60                            | 0.06 | 20            | 17            |
| KRS510635 | 406353  | 4089446  | 208                            | 726              | 50                              | 183       | 30                             | 3                              | 23                             | 4                              | 23                             | 4                              | 12                             | 2                              | 9                              | 1.0                            | 122                           | 0.14 | 19            | 14            |
| KRS510636 | 406479  | 4089713  | 216                            | 603              | 50                              | 184       | 31                             | 2                              | 25                             | 5                              | 28                             | 5                              | 14                             | 2                              | 10                             | 1.2                            | 148                           | 0.13 | 20            | 18            |
| KRS510641 | 406504  | 4089637  | 120                            | 270              | 27                              | 106       | 17                             | 3                              | 15                             | 2                              | 15                             | 2                              | 7                              | 1                              | 5                              | 0.6                            | 70                            | 0.07 | 23            | 18            |
| KRS510642 | 406040  | 4090541  | 138                            | 440              | 35                              | 127       | 22                             | 2                              | 21                             | 3                              | 21                             | 4                              | 11                             | 1                              | 8                              | 1.0                            | 105                           | 0.09 | 20            | 19            |
| KRS510643 | 406204  | 4090759  | 83                             | 220              | 18                              | 69        | 12                             | 2                              | 11                             | 2                              | 10                             | 2                              | 5                              | 1                              | 4                              | 0.5                            | 51                            | 0.05 | 20            | 18            |
| KRS510644 | 406988  | 4090954  | 147                            | 356              | 34                              | 125       | 20                             | 3                              | 17                             | 3                              | 15                             | 3                              | 8                              | 1                              | 6                              | 0.7                            | 78                            | 0.08 | 22            | 16            |
| KRS510645 | 406908  | 4090816  | 157                            | 472              | 40                              | 144       | 24                             | 3                              | 20                             | 3                              | 18                             | 3                              | 9                              | 1                              | 7                              | 0.8                            | 88                            | 0.10 | 21            | 16            |



| Sample ID | Easting | Northing | La <sub>2</sub> O <sub>3</sub> | CeO <sub>2</sub> | Pr <sub>6</sub> O <sub>11</sub> | Nd <sub>2</sub> O <sub>3</sub> | Sm <sub>2</sub> O <sub>3</sub> | Eu <sub>2</sub> O <sub>3</sub> | Gd <sub>2</sub> O <sub>3</sub> | Tb <sub>4</sub> O <sub>7</sub> | Dy <sub>2</sub> O <sub>3</sub> | Ho <sub>2</sub> O <sub>3</sub> | Er <sub>2</sub> O <sub>3</sub> | Tm <sub>2</sub> O <sub>3</sub> | Yb <sub>2</sub> O <sub>3</sub> | Lu <sub>2</sub> O <sub>3</sub> | <b>Y</b> <sub>2</sub> <b>O</b> <sub>3</sub> | TREO | MREO/<br>TREO | HREO/<br>TREO |
|-----------|---------|----------|--------------------------------|------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------------------|------|---------------|---------------|
|           |         |          | ррт                            | ррт              | ррт                             | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                            | ррт                                         | wt.% | %             | %             |
| KRS510646 | 406636  | 4091619  | 50                             | 114              | 11                              | 40                             | 7                              | 1                              | 6                              | 1                              | 6                              | 1                              | 3                              | 0                              | 2                              | 0.3                            | 29                                          | 0.03 | 21            | 18            |
| KRS510647 | 406636  | 4091619  | 133                            | 377              | 33                              | 119                            | 20                             | 3                              | 17                             | 3                              | 17                             | 3                              | 8                              | 1                              | 6                              | 0.7                            | 82                                          | 0.08 | 21            | 17            |
| KRS510648 | 407084  | 4091587  | 59                             | 152              | 13                              | 51                             | 9                              | 1                              | 9                              | 1                              | 9                              | 2                              | 5                              | 1                              | 4                              | 0.5                            | 50                                          | 0.04 | 20            | 23            |
| KRS510649 | 407274  | 4091516  | 78                             | 181              | 17                              | 66                             | 11                             | 2                              | 11                             | 2                              | 11                             | 2                              | 6                              | 1                              | 4                              | 0.6                            | 57                                          | 0.04 | 21            | 21            |
| KRS510650 | 407732  | 4091537  | 123                            | 299              | 31                              | 118                            | 20                             | 3                              | 16                             | 3                              | 15                             | 3                              | 8                              | 1                              | 6                              | 0.8                            | 79                                          | 0.07 | 23            | 19            |
| KRS510651 | 406651  | 4089489  | 258                            | 701              | 61                              | 230                            | 34                             | 3                              | 30                             | 5                              | 30                             | 5                              | 14                             | 2                              | 9                              | 1.0                            | 141                                         | 0.15 | 21            | 16            |
| KRS510652 | 406587  | 4089358  | 109                            | 256              | 27                              | 101                            | 18                             | 3                              | 13                             | 2                              | 13                             | 2                              | 6                              | 1                              | 4                              | 0.5                            | 61                                          | 0.06 | 23            | 17            |
| KRS510653 | 406758  | 4088987  | 94                             | 201              | 22                              | 86                             | 14                             | 4                              | 13                             | 2                              | 10                             | 2                              | 5                              | 1                              | 3                              | 0.4                            | 48                                          | 0.05 | 24            | 17            |
| KRS510654 | 406925  | 4089434  | 143                            | 533              | 36                              | 127                            | 22                             | 2                              | 24                             | 4                              | 26                             | 5                              | 13                             | 2                              | 9                              | 1.0                            | 120                                         | 0.11 | 18            | 19            |
| KRS510655 | 406862  | 4089524  | 161                            | 604              | 40                              | 141                            | 25                             | 2                              | 24                             | 4                              | 26                             | 5                              | 13                             | 2                              | 9                              | 1.0                            | 123                                         | 0.12 | 18            | 18            |
| KRS510656 | 407250  | 4089678  | 144                            | 380              | 35                              | 122                            | 21                             | 2                              | 21                             | 3                              | 22                             | 4                              | 11                             | 1                              | 7                              | 0.7                            | 103                                         | 0.09 | 21            | 20            |
| KRS510661 | 407555  | 4089418  | 161                            | 429              | 39                              | 145                            | 28                             | 3                              | 23                             | 4                              | 27                             | 5                              | 15                             | 2                              | 15                             | 2.1                            | 150                                         | 0.10 | 21            | 23            |
| KRS510662 | 406758  | 4088792  | 139                            | 313              | 37                              | 145                            | 27                             | 9                              | 22                             | 3                              | 16                             | 3                              | 7                              | 1                              | 5                              | 0.8                            | 76                                          | 0.08 | 25            | 18            |

TREO (Total Rare Earth Oxide) =  $La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Y_2O_3 + Lu_2O_3$ .

MREO (Magnetic Rare Earth Oxide) =  $Pr_6O_{11} + Nd_2O_3 + Tb_4O_7 + Dy_2O_3$ 

HREO (Heavy Rare Earth Oxide) =  $Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Y_2O_3 + Lu_2O_3 + Lu_$ 



## Appendix 4: JORC Code, 2012 Edition – Table 1

## Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | Nature and quality of sampling (e.g., cut channels,<br>random chips, or specific specialised industry<br>standard measurement tools appropriate to the<br>minerals under investigation, such as down hole<br>gamma sondes, or handheld XRF instruments,<br>etc.). These examples should not be taken as<br>limiting the broad meaning of sampling.<br>Include reference to measures taken to ensure<br>sample representivity and the appropriate<br>calibration of any measurement tools or systems<br>used. | Rock-chip samples were collected from outcrop where<br>present and float in areas where no outcrop was present.<br>Surface reconnaissance rock-chip samples were taken based<br>upon geological features relevant to the target style of<br>mineralisation.<br>Sample sites were chosen selectively to reflect geological<br>features relevant to the target style of mineralisation.<br>Stream-sediment samples sites were pre-defined based on a<br>catchment analysis. Actual samples sites were refined in the<br>field based on suitability and representative nature<br>Only fresh rock samples were collected.<br>Surface reconnaissance rock-chip samples are not considered<br>representative and are used as an early-stage exploration<br>tool. |
|                        | Aspects of the determination of mineralisation that are Material to the Public Report.                                                                                                                                                                                                                                                                                                                                                                                                                       | Stream-sediment samples were only taken at sites considered<br>to be free of significant anthropogenic sedimentary<br>contaminants<br>Mineralisation was visually determined by the field geologists<br>by presence of iron oxides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse                                                                                                                                                                                                                                                                                                                                                                                                         | Outcrop samples were collected using a geological hammer<br>with a target weight of 1–2 kg which was crushed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        | circulation drilling was used to obtain 1 m samples<br>from which 3 kg was pulverised to produce a 30 g<br>charge for fire assay'). In other cases, more<br>explanation may be required, such as where there<br>is coarse gold that has inherent sampling<br>problems. Unusual commodities or mineralisation<br>types (e.g. submarine nodules) may warrant                                                                                                                                                   | Stream-sediment samples were collected from surface with a shovel, and coarse sieved to sub 5 mm in the field, with a weight of $\sim$ 2 kg collected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        | disclosure of detailed information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Drilling<br>techniques | Drill type (e.g. core, reverse circulation, open-hole<br>hammer, rotary air blast, auger, Bangka, sonic,<br>etc.) and details (e.g. core diameter, triple or<br>standard tube, depth of diamond tails, face-<br>sampling bit or other type, whether core is<br>oriented and if so, by what method, etc.).                                                                                                                                                                                                    | No drilling reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Drill sample           | Method of recording and assessing core and chip                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No drilling reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| recovery               | sample recoveries and results assessed.<br>Measures taken to maximise sample recovery and<br>ensure representative nature of the samples.                                                                                                                                                                                                                                                                                                                                                                    | No drilling reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        | Whether a relationship exists between sample<br>recovery and grade and whether sample bias may<br>have occurred due to preferential loss/gain of<br>fine/coarse material.                                                                                                                                                                                                                                                                                                                                    | No drilling reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Logging                | Whether core and chip samples have been<br>geologically and geotechnically logged to a level<br>of detail to support appropriate Mineral Resource<br>estimation, mining studies and metallurgical<br>studies.                                                                                                                                                                                                                                                                                                | Field observations were recorded for rock-chip and stream-<br>sediment samples and all samples were photographed to<br>support the early-stage reconnaissance targeting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        | Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                   | No drilling reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



| Criteria                                               | JORC Code explanation                                                                                                                                     | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        | photography.                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                        | The total length and percentage of the relevant intersections logged.                                                                                     | No drilling reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sub-sampling<br>techniques                             | If core, whether cut or sawn and whether quarter, half or all core taken.                                                                                 | No drilling reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| and sample<br>preparation                              | If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.                                                            | Rock-chip samples were taken dry and a selection had<br>representative slabs cut. All of the remaining offcuts of each<br>sample were sent for analyses. Stream-sediment samples<br>were coarse sieved in the field then oven dried.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                        | For all sample types, the nature, quality and<br>appropriateness of the sample preparation<br>technique.                                                  | All SAU rock-chip samples were sent to SGS laboratory in<br>South Korea for sample preparation. SGS is an ISO/IEC<br>17025:2005 certified laboratory. Samples were dried and<br>crushed to 75% passing 2mm, split to 1,000g, then<br>pulverised to 85% passing 150 microns. Pulp samples are<br>then split using a micro-riffle splitter to produce 500g of pulp<br>reject, 250g of pulp duplicate, and 250g of sample for<br>shipment to ALS Laboratories in Australia in the case of REE<br>& Li projects                                                                                                                                                                                                                                               |
|                                                        |                                                                                                                                                           | For stream-sediment samples, a 1kg split was oven dried then<br>sent to SGS laboratory in South Korea. At SGS, samples were<br>dried and crushed to 75% passing 2mm, split to 500g, then<br>pulverised to 85% passing 150 microns. Pulp samples are then<br>split using a micro-riffle splitter to produce 250g of pulp<br>duplicate, and 250g of sample for shipment to ALS<br>Laboratories in Australia                                                                                                                                                                                                                                                                                                                                                 |
|                                                        |                                                                                                                                                           | The nature of the laboratory preparation techniques is considered 'industry standard' and appropriate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                        | Quality control procedures adopted for all sub-<br>sampling stages to maximise representivity of<br>samples.                                              | The crushing stage unit is a Rocklabs Smart Boyd-RSD Crusher<br>capable of over 5 kg primary sample in one load, with rotating<br>sample divider (RSD) ensuring single pass crushing, producing<br>representative coarse sample split sent to grinding, typically<br>up to 1,000 g. Coarse rejects are retained for each sample.<br>The grinding stage unit is an Essa LM2 and uses a large<br>grinding bowl (1,600 g) ensuring single pass grinding of the<br>coarse split. The full 1 kg of pulp material was sent to ALS Labs<br>for micro-riffle splitting enabling a parent pulp sample, a<br>daughter pulp sample, and two reject pulp samples to be<br>produced (typically each 250 g) in one grind. Pulp rejects are<br>retained for each sample. |
|                                                        | Measures taken to ensure that the sampling is<br>representative of the in-situ material collected,<br>including for instance results for field            | Rock-chips were collected from representative outcrop or<br>float.<br>Stream-sediment samples were only taken at sites considered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                        | duplicate/second-half sampling.                                                                                                                           | to be free of significant anthropogenic sedimentary contaminants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                        | Whether sample sizes are appropriate to the grain size of the material being sampled.                                                                     | The size of rock-chip and stream-sediment samples is appropriate for this stage of exploration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Quality of<br>assay data<br>and<br>laboratory<br>tests | The nature, quality and appropriateness of the<br>assaying and laboratory procedures used and<br>whether the technique is considered partial or<br>total. | Rock-chips for Chungju & lithium projects were analysed<br>using protocol ME-MS81D to obtain the full REE suite. This<br>technique is a total method that is considered appropriate for<br>REE analyses. The samples were analysed using ME-4ACD81<br>and ME-ICP06 for additional trace and major elements.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                        |                                                                                                                                                           | Stream-sediment samples were analysed using protocol ME-<br>MS61r to obtain the full REE suite, Li and various other metals<br>considered relevant for exploration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             |                                                                                                                                                                                                                                               | The nature of the laboratory analytical techniques is a near-<br>total method that is considered appropriate for early stage<br>exploration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                             | For geophysical tools, spectrometers, handheld<br>XRF instruments, etc., the parameters used in<br>determining the analysis including instrument<br>make and model, reading times, calibrations<br>factors applied and their derivation, etc. | Not applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                             | Nature of quality control procedures adopted (e.g.<br>standards, blanks, duplicates, external laboratory<br>checks) and whether acceptable levels of accuracy<br>(i.e. lack of bias) and precision have been<br>established.                  | The laboratory uses in-house controls, blanks, and duplicates.<br>Acceptable levels of accuracy and precision have been<br>achieved by the laboratory given the purpose of the analysis<br>(early stage exploration).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Verification of<br>sampling and<br>assaying | The verification of significant intersections by either independent or alternative company personnel.                                                                                                                                         | No independent verification of the geochemical data has been carried out to date.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                             | The use of twinned holes.                                                                                                                                                                                                                     | No drilling reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             | Documentation of primary data, data entry<br>procedures, data verification, data storage<br>(physical and electronic) protocols.                                                                                                              | All field logging is entered into notebooks on site and then<br>digitised into Excel sheets and uploaded into the database at<br>the office.<br>Assay files are received electronically from the laboratories<br>and uploaded into the database.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                             | Discuss any adjustment to assay data.                                                                                                                                                                                                         | <ul> <li>The conversion of elemental weight percent of REEs to oxide weight percent in order to calculate TREO and MREO used the following conversion factors:         <ul> <li>La<sub>2</sub>O<sub>3</sub></li> <li>L1728</li> <li>CeO<sub>2</sub></li> <li>L2284</li> <li>Pr<sub>6</sub>O<sub>11</sub></li> <li>L203</li> <li>L1664</li> <li>Sm<sub>2</sub>O<sub>3</sub></li> <li>L1596</li> <li>Eu<sub>2</sub>O<sub>3</sub></li> <li>L1579</li> <li>Gd<sub>2</sub>O<sub>3</sub></li> <li>L1579</li> <li>Gd<sub>2</sub>O<sub>3</sub></li> <li>L1456</li> <li>Tb<sub>4</sub>O<sub>7</sub></li> <li>L1762</li> <li>Dy<sub>2</sub>O<sub>3</sub></li> <li>L1477</li> <li>HO<sub>2</sub>O<sub>3</sub></li> <li>L1455</li> <li>Er<sub>2</sub>O<sub>3</sub></li> <li>L1435</li> <li>Tm<sub>2</sub>O<sub>3</sub></li> <li>L1435</li> <li>Tm<sub>2</sub>O<sub>3</sub></li> <li>L1437</li> <li>Yb<sub>2</sub>O<sub>3</sub></li> <li>L1438</li> <li>Tm<sub>2</sub>O<sub>3</sub></li> <li>L1421</li> <li>Yb<sub>2</sub>O<sub>3</sub></li> <li>L1435</li> <li>Tm<sub>2</sub>O<sub>3</sub></li> <li>L1421</li> <li>Yb<sub>2</sub>O<sub>3</sub></li> <li>L1435</li> <li>The conversion of ppm Li to Li<sub>2</sub>O was achieved by multiplying by 2.153</li> </ul> </li> <li>The calculation of ppm Mg and K from oxide weight percent for fertility and fractionation calculations was achieved by multiplying by 0.60317 &amp; 0.83013 respectively</li> </ul> |
| Location of<br>data points                  | Accuracy and quality of surveys used to locate drill<br>holes (collar and down-hole surveys), trenches,<br>mine workings and other locations used in Mineral<br>Resource estimation.                                                          | Rock-chip and stream-sediment sample locations were collected using a handheld GPS with an accuracy of +/- 5 m in easting and northing and +/- 10 m in elevation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                             | Specification of the grid system used.                                                                                                                                                                                                        | Grid system used is WGS 84/UTM zone 52N.<br>South Korean tenements were granted under the Tokyo<br>Datum before January 2011 with all tenements subsequently<br>granted under WGS84/UTM geodetic reference system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                             | Quality and adequacy of topographic control.                                                                                                                                                                                                  | The quality of topographic control is adequate for early-stage<br>surface reconnaissance REE exploration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                             | Data spacing for reporting of Exploration Results.                                                                                                                                                                                            | Rock-chip samples were taken where opportune and are<br>therefore irregularly spaced. Stream-sediment sites were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Data spacing<br>and<br>distribution                                 | Whether the data spacing and distribution is<br>sufficient to establish the degree of geological and<br>grade continuity appropriate for the Mineral<br>Resource and Ore Reserve estimation<br>procedure(s) and classifications applied. | generated by a catchment analysis and then refined in the<br>field based on site suitability & contamination factors<br>Exploration is at an early-stage reconnaissance level. The<br>rock-chip & stream-sediment spacing and distribution is not<br>sufficient to establish the degree of geological and grade<br>continuity appropriate for a Mineral Resource.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Orientation of<br>data in<br>relation to<br>geological<br>structure | Whether sample compositing has been applied.<br>Whether the orientation of sampling achieves<br>unbiased sampling of possible structures and the<br>extent to which this is known, considering the<br>deposit type.                      | No sample composting has been applied.<br>Samples were collected where outcrop and/or mineralised<br>float were encountered south of Hongcheon. Rock-chip<br>sampling by nature is biased and this is considered<br>appropriate for early-stage exploration. Stream-sediment<br>sampling was guided by a catchment analysis and no<br>significant bias is known.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                                     | If the relationship between the drilling orientation<br>and the orientation of key mineralised structures<br>is considered to have introduced a sampling bias,<br>this should be assessed and reported if material.                      | No drilling reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Sample<br>security                                                  | The measures taken to ensure sample security.                                                                                                                                                                                            | All samples were collected, bagged, and sealed by SAU staff.<br>From the point of sample generation to laboratory, samples<br>(and reject returns) are under the full security and Chain of<br>Custody of the Company. This is done by the following<br>procedures:<br>Post on-site logging and processing, samples are transported<br>to the Company's shed facilities under the direct supervision<br>of a Company representative. Samples are further processed<br>for dispatch by Company representatives under guidance of<br>the Competent Person. Bagged samples are secured by tags<br>and delivered by a Company representative to a courier<br>service to deliver to the sample preparation laboratory. The<br>preparation laboratory sends pulp samples directly to the<br>assay laboratory for analysis via door-to-door courier service.<br>All rejects are returned under courier service and stored in<br>the Company's secure lock-up long-term core storage facility. |  |  |  |
| Audits or<br>reviews                                                | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                    | No audits or reviews have been undertaken for rock-chip or stream-sediment sampling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |

## Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                                     | JORC Code explanation                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria<br>Mineral<br>tenement and<br>land tenure<br>status | JORC Code explanation<br>Type, reference name/number, location and<br>ownership including agreements or material<br>issues with third parties such as joint ventures,<br>partnerships, overriding royalties, native title<br>interests, historical sites, wilderness or national<br>park and environmental settings. | All tenements referred to in this report are exploration<br>licence applications, submitted by SAU.<br>All tenements pertinent to this release are presented in<br>Figures within the text, e.g., Figure 1, Figure 8.<br>The Dangyang Project has exploration licence application<br>lodged over a national park. The company understands that<br>there is provision within the Korean tenement system for<br>applications to be granted over such areas and will follow due<br>process with the Mine Registration Office (MRO).<br>Prior to January 2001 all South Korean tenements were<br>granted using the Tokyo Datum with all tenements now |
|                                                              |                                                                                                                                                                                                                                                                                                                      | granted using the WGS84 Datum. This results in a partial<br>overlap of SAU applications over any tenements granted<br>before January 2011. These overlapping areas will be excised                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| Criteria                     | JORC Code explanation                                                                     | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                                                                                           | from SAU applications by the MRO upon grant of licence if the<br>underlying granted licence is for the same mineral sought in<br>SAU applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | The security of the tenure held at the time of                                            | There are no native title interests in Korea. It is a generally<br>accepted requirement that mineral title holders gain the<br>consent of local landowners and residents before undertaking<br>any major exploration activity, such as drilling. However, no<br>consent it required for geophysical surveys, soil/rock-chip<br>sampling and mapping.<br>Following the submission of a Mineral Deposit Report for a<br>licence application, it is reviewed by the Mine Registration                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | reporting along with any known impediments to obtaining a license to operate in the area. | Office (MRO) who determines if the application meets<br>specified criteria for approval and if so, grant an Exploration<br>Right. The holder has one year to submit an Exploration Plan<br>to MOTIE outlining planned work. An initial three-year<br>exploration period is given to complete exploration work,<br>which can be subsequently extended for a further 3 years<br>upon successful submission to MOTIE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                           | Upon successful conversion to an Exploration Right, the holder has 3 years to submit Exploration Results and have an Extraction Plan authorised. An application can be made to extend this period by 1 year. The Extraction Plan is submitted to the Local Government and requires approvals from a number of stakeholders. The term of an Extraction Right is 20 years. This can be extended upon application, provided all statutory requirements have been met over the life of the mine. From the date the Extraction Plan is approved, the title holder has a 3-year period in which mine production must commence. During this 3-year period, the title holder must make a minimum level of investment on plant and mine infrastructure in the amount of KRW100 million (~AUD\$120,000) and meet certain minimum annual production levels, which are dependent on the commodity being mined. |
| Exploration<br>done by other | Acknowledgment and appraisal of exploration by other parties.                             | There are no known impediments to obtaining a license to operate.<br>KIGAM has undertaken high-level reconnaissance surveys including airborne geophysics, country-wide regional stream sediment surveys and regional geological mapping.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| parties                      |                                                                                           | SAU geologists are in the process of interpreting extensive<br>reports by KIGAM and KETEP detailing historical drilling and<br>rock-chip sampling at the Boam deposit, adjacent to SAU's<br>application area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              |                                                                                           | Peninsula Mines Limited conducted a stream-sediment<br>sampling survey at its Dongsugok Project (within SAU<br>Samguen Li Project) and Daehyeon Li Project (within SAU<br>Seobyeok Project) for a total of 339 samples in 2016.<br>Locations of the stream sediments were not publicly<br>reported, only summary maps were presented. In 2017,<br>Peninsula collected 568 ridge and spur soil samples at<br>Tonggo, the locations of which were publicly reported.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                           | Historical drilling at Eorae San has been undertaken by KIER,<br>KIGAM and KETEP and previously reported by SAU in ASX<br>release dated 27 <sup>th</sup> April 2023 entitled "Southern Gold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



| Criteria               | JORC Code explanation                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                                                             | develops new lithium exploration portfolio in South Korea".<br>Competent Person: Dr Michael Gazley.                                                                                                                                                                                                                                                                                                                                                                                                    |
| Geology                | Deposit type, geological setting, and style of mineralisation.                              | The Boam deposit comprises Li and Sn mineralised pegmatites emplaced in the Janggun Limestone and Yulri Formation, in the Uljin area. The pegmatites intruded in a northeast to southwest direction, parallel to the direction of the foliation.                                                                                                                                                                                                                                                       |
|                        |                                                                                             | The primary Li mineral in these pegmatites is lepidolite, while<br>the primary Sn mineral is cassiterite. Dating of the lepidolite<br>suggests that hydrothermal fluvial inputs occurred in the<br>Early to Late Jurassic, with Li mineralisation occurring in the<br>Middle to Late Jurassic. Therefore, a Jurassic leucocratic<br>granite has been identified as the source rock for the Li<br>pegmatites.                                                                                           |
|                        |                                                                                             | The REE mineralisation at Eorae San is hosted in a magnetite-<br>bearing, metamorphic and metavolcanic layer of the<br>Kyemyungsan Formation of the sedimentary Okcheon Group.<br>The Kyemyungsan Formation covers SAU's Chungju REE<br>project and the westernmost REE mineralised zone of the<br>Eorae San deposit extends into one of SAU's exploration<br>licence applications. The primary REE mineralisation is<br>interpreted to relate to an alkaline intrusion and pegmatite at<br>Eorae San. |
| Drill hole             | A summary of all information material to the                                                | No drilling reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Information            | understanding of the exploration results including                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | a tabulation of the following information for all                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | Material drill holes:                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | • easting and northing of the drill hole collar                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | elevation or RL (Reduced Level – elevation                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | above sea level in meters) of the drill hole collar                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | <ul> <li>dip and azimuth of the hole</li> </ul>                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | <ul> <li>down hole length and interception depth</li> </ul>                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | <ul> <li>hole length.</li> </ul>                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | If the exclusion of this information is justified on                                        | The Competent Person is not aware of any Material                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        | the basis that the information is not Material and                                          | information being excluded from this ASX release.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        | this exclusion does not detract from the                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | understanding of the report, the Competent                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | Person should clearly explain why this is the case.                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Data                   | In reporting Exploration Results, weighting                                                 | No drilling reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| aggregation<br>methods | averaging techniques, maximum and/or<br>minimum grade truncations (e.g., cutting of high    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| methous                | grades) and cut-off grades are usually Material                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | and should be stated.                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | Where aggregate intercepts incorporate short                                                | No drilling reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | lengths of high-grade results and longer lengths of                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | low-grade results, the procedure used for such                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | aggregation should be stated and some typical                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | examples of such aggregations should be shown                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | in detail.                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | The assumptions used for any reporting of metal equivalent values should be clearly stated. | No metal equivalent values have been reported in this ASX Release.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        | These relationships are particularly important in                                           | No drilling reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                   |  |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Relationship                                | the reporting of Exploration Results.                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                              |  |  |  |
| between<br>mineralisation<br>widths and     | If the geometry of the mineralisation with respect<br>to the drill hole angle is known, its nature should<br>be reported.                                                                                                                                                                                                                                                                                     | No drilling reported.                                                                                                                                                                                                                                                                                                        |  |  |  |
| intercept<br>lengths                        | If it is not known and only the down hole lengths<br>are reported, there should be a clear statement to<br>this effect (e.g. 'down hole length, true width not<br>known').                                                                                                                                                                                                                                    | No drilling reported.                                                                                                                                                                                                                                                                                                        |  |  |  |
| Diagrams                                    | Appropriate maps and sections (with scales) and<br>tabulations of intercepts should be included for<br>any significant discovery being reported These<br>should include, but not be limited to a plan view of<br>drill hole collar locations and appropriate<br>sectional views.                                                                                                                              | No drilling reported. Overview maps of samples are shown in Figures throughout.                                                                                                                                                                                                                                              |  |  |  |
| Balanced<br>reporting                       | Where comprehensive reporting of all Exploration<br>Results is not practicable, representative<br>reporting of both low and high grades and/or<br>widths should be practiced to avoid misleading<br>reporting of Exploration Results.                                                                                                                                                                         | Results presented in Appendices 2, 3 & 4 represent all samples assayed. Appendix 1 shows Li results >100ppm Li <sub>2</sub> O.                                                                                                                                                                                               |  |  |  |
| Other<br>substantive<br>exploration<br>data | Other exploration data, if meaningful and<br>material, should be reported including (but not<br>limited to): geological observations; geophysical<br>survey results; geochemical survey results; bulk<br>samples – size and method of treatment;<br>metallurgical test results; bulk density,<br>groundwater, geotechnical and rock<br>characteristics; potential deleterious or<br>contaminating substances. | All relevant data available to SAU has been documented in<br>this report or previous SAU announcements:<br><u>https://wcsecure.weblink.com.au/pdf/SAU/02641110.</u><br><u>pdf</u><br><u>https://wcsecure.weblink.com.au/pdf/SAU/02658284.</u><br><u>pdf</u>                                                                  |  |  |  |
| Further work                                | The nature and scale of planned further work (e.g.<br>tests for lateral extensions or depth extensions or<br>large-scale step-out drilling).<br>Diagrams clearly highlighting the areas of                                                                                                                                                                                                                    | Planned work programs include detailed follow-up<br>exploration around areas with encouraging results to date<br>and ongoing regional reconnaissance exploration across<br>unexplored areas, including stream sediment sampling and<br>rock chip sampling.<br>Li exploration and exploration at Chungju REE project is early |  |  |  |
|                                             | possible extensions, including the main geological<br>interpretations and future drilling areas, provided<br>this information is not commercially sensitive.                                                                                                                                                                                                                                                  | stage greenfields with drill targets yet to be defined.                                                                                                                                                                                                                                                                      |  |  |  |