Appendix

JORC Code 2012 Edition "Table 1"

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 HQ and NQ sized diamond drill core. Triple-tube wireline standard equipment. 1 metre, ½ core samples collected in visually mineralized intervals. 2-metre ¼ core samples in visually non-mineralised or weakly core. Whole sample core pulverized to 80% pass 200 mesh. 50 g chare fire assay for gold. Wet geochemical or XRF techniques for silver and other metals. Regular assay suite: Au, Ag, As, Sb, Cu, Pb, Zn, Ba and Mn.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (ego core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 HQ and NQ sized diamond drill core. Triple-tube wire line standard equipment. Core is oriented where ever possible using the spear technique.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Recovered is measured in the core tube by the driller and a marker inserted into the core tray noting any core loss. Core recovery is double checked by the geologist when logging the hole. No relationship between core recovery and grade has been discovered.
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	• All core is geologically logged and photographed prior to sampling. Structural measurements are obtained where core orientation has been successful. Geotechnical logging is not carried out. Logging is qualitative and 100% of reported intersections have been logged

Criteria	JORC Code explanation	Con	nmentai	ry			
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 						
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	r s a ii (s r r c s	rule in vis unminera sampling assay an saw. Wha are made ntervals Quality co samples) number s requester Sampling	sually miner alised or we is carried of d freight co ere there is to honour slightly less ontrol proce and blanks sequence. I d size is cor	s sampled over 1- ralized intervals. V akly mineralized t out over 2 or 3 me sts. Splitting the c a major geologica the boundary whi s or slightly more t edures include the s (1 in 20 samples f any blank or star nsidered to be app Is has never been	Vhere the core is hen continuous tre intervals to e ore is done with al boundary, sar ch may result in han 1 metre. insertion of sta) into the regula ndard is out of s	s visually 1/4 core economize on a diamond npling intervals sampling ndards (1 in 25 ir sample pec, re-assay is repeatability for
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument 	 All samples are completely pulverized and assayed at Intertek Testing Services laboratory <u>http://www.intertek.com/minerals/global-</u> <u>services/</u>: The following elements and ITS techniques are used: UPPER DETECTION 					
	make and model, reading times, calibrations factors applied and their	IL	DENTS:	UNITS:	DETECTION:	LIMIT:	SCHEME:
	 derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels 		Au	ppm	50	0.01	FA51
			Ag	ppm	100	1	GA02
	of accuracy (i.e. lack of bias) and precision have been established.		Cu	ppm	0	50	GA50S
			Pb -	ppm	0	50	GA50S
			Zn	ppm	0	50	GA50S
			Mn	ppm	0	50	GA50S
			As	ppm	0	10	XR02
			Sb	ppm	0	10	XR02
			Ва	%	100	0.01	XR02
			Ag	ppm	10000	5	GA30
					edures include the s (1 in 20 samples		

Criteria	JORC Code explanation	Commentary
		 number sequence. If any blank or standard is out of spec, re-assay is requested 1:50 samples pulps is sent to a second independent laboratory in Perth Australia (Ultratrace) on a regular quarterly frequency mttp://www.bureauveritas.com.au/wps/wcm/connect/bv_comau/local/h_ome/about-us/our-business/commodities/exploration-and-mining/geochemistry No material issues of assay bias or repeatability have occurred since drilling commenced in 2008
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Calculations of significant intersections are carried out by Competent Person John Andrew Levings, FAusIMM. Twinned holes are generally not used or considered to be required. Electronic data is stored and reported using the password-protected Geobank software. Data is networked backed up across several physical sites (Romang Island, Jakarta Office, Sydney Office) Physical assay reports are filed in Jakarta office All data entry is under control of a specialist database geologist No adjustments to assay data are carried out
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill collars are surveyed by company surveyors using Total Station equipment and tied in to an independently verified system of triangulation benchmarks All coordinates are quote in UTM-UTS Topographic control is excellent and was established using the LIDAR system (plus or minus 0.3m)
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data spacing (drill-hole spacing) is variable and appropriate to the geology. As this is an exploration project, infill drilling is often necessary to confirm interpretations. In general a drillhole spacing of 40 metres is used in breccias style mineralisation and 80m for stratabound mineralisation. Sample compositing is not used in reporting exploration results
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a 	 This is variable. The breccias – style mineralisation is often irregular and drilling is oriented to intersect as perpendicular as possible to the gross strike and dip of the deposits. The VMS mineralisation is sub horizontal. 60 degree inclined angled holes are used as a compromise to test the flat-lying exhalative zones and any steeper

Criteria	JORC Code explanation	Commentary
	sampling bias, this should be assessed and reported if material.	footwall stringer mineralisationNo material sampling bias is considered to have been introduced
Sample security	The measures taken to ensure sample security.	 Samples are taken in covered trays from the drill site to the core processing facility at Romang Island base camp. Company personnel log, photograph and spilt the core. 1/2 or 3/4 of the core is retained in the core shed as a geological reference and for use should further tests be required. All samples for assay are bagged in numbered calico sample bags which are then sewn in to polyweave bags for transport. Company security personnel and Mobile Brigade police then accompany the samples from the base camp (by porter, company boat and charter plane) to Kupang in West Timor. At this point the samples are dispatched by commercial flight door to door courier to ITS laboratory in Jakarta. This is considered to be a secure and reasonable procedure and no instances of tampering with samples have occurred since 2008.
Audits or reviews	• The results of any audits or reviews of sampling techniques and dat	 Audits of sampling procedure have been completed in 2011 and 2013 bit Micromine Consulting and Mining Associate respectively, No material issues were raised

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral</i> <i>tenement and</i> <i>land tenure</i> <i>status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 Robust's tenure on Romang Island is under the Indonesian national Izin Usaha Pertambangan or Mining Business License (IUP) system. Robust, has a direct 70% interest in the 5 IUPs totaling 10,000 Ha through the title holder company PT Gemala Borneo Utama. The Robust IUPs are in exploration stage and must be converted to production stage by March 2015. It is anticipated that the conversion will take place in the first half of 2014. The other 30% shareholder in the IUPs is Indonesia's Salim Group. Salim group is also a major shareholder in Robust resources Limited. Robust's IUPs are in "production forest" and as such require a "borrow and use" permit from the Indonesian department of forestry. Robust has current borrow and use permits for its 5 IUP All 5 Robust IUPs have been published on the Indonesian Mines

Criteria	JORC Code explanation	Commentary
		Department "Clean and Clear" list
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 In 1998 and 1999 Billiton (nor BHP Billiton) conducted 2 diamond drilling programs totaling 14 holes within the Lakuwahi Caldera. Robust's first drill holes in 2008 was numbered LWD015 in recognition of the 14 Billiton holes. Results obtained by Robust are entirely consistent with the earlier results from the Billiton work
Geology	• Deposit type, geological setting and style of mineralisation.	 The mineralisation at Lakuwahi is considered to by hydrothermal in type. The mineralisation occurs in a caldera setting. Three styles of mineralisation have been recognized. Breccia – style containing galena, sphalerite, chalcopyrite, barite, pyrite, gold and silver Exhalative VMS. Laterally extensive horizon containing galena, sphalerite, chalcopyrite, barite, pyrite, gold and silver Manganese Oxide: replacement of limestone
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	See separate table in this report
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intercepts are calculated using the length-weighted averages of individual samples. Minimum grade truncations are applied. For example in oxide gold zones a minimum of 0.25 g/t Gold Equivalent is used to guide lower cut offs. Local geology is also used as an input (e.g. hole to hole correlations) Cutting of high grades is not carried out but where high-grades do exist, a high grade sub-interval will be reported. The following table shows individual assay results from hole number LWD357. It shows where a higher-grade sub interval is selected (22

eria	JORC Code explanation	Commen	tary						
		Zn) fro	n: 6m at 1. m a broac 21m at 0.7	ler continu	uous inter	section of	of minera	alisation	(22 to
		De	pth	Au1	Ag	Cu	Pb	Zn	
		From	То	ppm	ppm	ppm	ppm	ppm	
		0.00	3.00	0.08	6	160	2590	1790	
		Standar d		<0.01	<1	80	<50	140	
		3.00	6.00	0.04	3	110	1170	510	
		6.00	9.00	0.04	5	130	1010	390	
		9.00	12.00	0.03	3	140	740	530	
		12.00	15.00	<0.01	3	100	290	1390	
		15.00	16.00	0.01	1	70	480	1070	
		16.00	17.35	0.02	4	540	6850	4910	
		17.35	18.35	<0.01	12	140	1340	16700	
		18.35	19.35	<0.01	16	60	3320	4700	
		19.35	20.40	0.06	6	<50	1000	860	
		20.40	21.00	0.17	8	<50	390	190	
		21.00	22.00	0.17	8	<50	70	160	
		22.00	23.00	1.25	65	1380	13400	25600	Hi Grade
		23.00	24.00	4.16	468	14400	111000	185000	Hi Grade
		24.00	25.00	2.47	348	5770	61100	121000	Hi Grade
		25.00	26.00	0.4	49	1540	23700	46200	Hi Grade
		26.00	27.00	0.7	60	1950	31400	47900	Hi Grade
		27.00	28.00	0.92	84	1170	19000	25500	Hi Grade
		28.00	29.00	0.26	40	510	4220	2370	
		29.00	30.00	0.26	27	330	4820	3530	
		Blank		2.19	34	330	330	130	
		30.00	31.00	0.27	6	250	3350	3450	

a	JORC Code explanation	Commen	tary					
		31.00	32.00	0.87	73	1020	7240	6430
		32.00	33.00	0.46	31	1530	20200	30600
		33.00	34.00	0.21	5	210	2470	1990
		34.00	35.00	0.27	28	390	2360	1500
		35.00	36.00	0.23	26	390	990	960
		36.00	37.00	0.35	18	420	1980	1030
		37.00	38.00	0.41	17	590	7400	5560
		38.00	39.00	0.4	22	1520	22800	13600
		39.00	40.00	0.6	22	6000	35500	14000
		40.00	41.00	0.28	30	840	8900	9430
		41.00	42.00	0.33	19	430	5400	6550
		42.00	43.00	0.37	8	160	1740	2290
		43.00	44.00	0.18	3	100	700	1810
		44.00	45.00	0.17	4	380	3210	2370
		45.00	46.00	0.16	2	90	320	1210
		46.00	47.00	0.2	2	120	420	1120
		47.00	48.00	0.15	2	80	500	1140
		48.00	49.00	0.13	3	190	2100	4420
		Blank		0.51	3	7780	80	160
		49.00	50.00	0.14	2	80	540	1140

AuEq = Gold Equivalent = gold assay + (silver assay / 53) where the number 53 represents the ratio where 53 g/t Ag = 1g/t Au. This ratio was calculated and rounded to the nearest whole integer from the average of the 24 months of Financial Year 2011 from July 2011 to June 2013 taken from published World Bank Commodity Price Data http://siteresources.worldbank.org/INTPROSPECTS/Resources/334 http://siteresources.worldbank.org/INTPROSPECTS/Resources/334 http://siteresources.worldbank.org/INTPROSPECTS/Resources/334 http://siteresources.worldbank.org/INTPROSPECTS/Resources/334 http://siteresources.worldbank.org/INTPROSPECTS/Resources/334 siteresources.worldbank.org/INTPROSPEcts/Resources/334 gold price of USD \$1638.39 per ounce and average Gold price of USD \$1638.39 per ounce and average Silver price of USD \$31.05 per ounce.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 In general down-hole lengths are reported due to the irregular nature of the breccias style mineralisation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Plan views and sectional views are included in this report
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All intersections, both high and low grade are tabulated in this report
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Not applicable to this report
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Diagrams clearly show where mineralized zones are open. The Company is operating 8 exploration drill rigs within the Lakuwahi Caldera. The company has many targets and is continually reviewing and fine tuning its exploration program in the light of new results.

Sections 3 to 5 of the standard JORC Table 1 are not relevant to this report